


Lecture Notes in Physics 
Editorial Board 

H. Araki, Kyoto, Japan 
E. Brezin, Paris, France 
J. Ehlers, Potsdam, Germany 
U. Frisch, Nice, France 
K. Hepp, Zürich, Switzerland 
R. L. Jaffe, Cambridge, MA, USA 
R. Kippenhahn, Göttingen, Germany 
H. A. Weidenmüller, Heidelberg, Germany 
J. Wess, München, Germany 
J. Zittartz, Köln, Germany 

Managing Editor 

W. Beiglböck 
Assisted by Mrs. Sabine Lehr 
c/o Springer-Verlag, Physics Editorial Department II 
Tiergartenstrasse 17, D-69121 Heidelberg, Germany 

Springer-Verlag Berlin Heidelberg GmbH 



The Editorial Policy for Proceedings 

The series Lecture Notes in Physics reports new developments in physical research and teaching- quickly, 
informally,and at a high Ievel. The proceedings tobe considered for publication in this series should be limited 
to only a few areas of research, and these should be closely related to each other. The contributions should be 
of a high standard and should avoid lengthy redraftings of papers already published or ab outtobe published 
elsewhere. As a whole, the proceedings should aim for a balanced presentation of the theme of the conference 
including a description of the techniques used and enough motivation for a broad readership. It should not 
be assumed that the published proceedings must reflect the conference in its entirety. (A listing or abstracts 
of papers presented at the meeting but not included in the proceedings could be added as an appendix.) 
When applying for publication in the series Lecture Notes in Physics the volume's editor(s) should submit 
sufficient material to enable the series editors and their referees to make a fairly accurate evaluation ( e.g. a 
complete Iist of speakers and titles of paperstobe presented and abstracts). If, based on this information, the 
proceedings are (tentatively) accepted, the volume's editor(s), whose name(s) will appear on the title pages, 
should select the papers suitable for publication and have them refereed (as for a journal) when appropriate. 
As a rule discussions will not be accepted. The series editors and Springer-Verlag will normally not interfere 
with the detailed editing except in fairly obvious cases or on technical matters. 
Final acceptance is expressed by the series editor in charge, in consultation with Springer-Verlag only after 
receiving the complete manuscript.lt might help to send a copy of the authors' manuscripts in advance to the 
editor in charge to discuss possible revisions with him. As a general rule, the series editor will confirm his 
tentative acceptance if the final manuscript corresponds to the original concept discussed, if the quality of the 
contribution meets the requirements of the series, and if the final size of the manuscript does not greatly 
exceed the number of pages originally agreed upon. The manuscript should be forwarded to Springer-Verlag 
shortly after the meeting. In cases of extreme delay (more than six months after the conference) the series 
editorswill check once more the timeliness of the papers. Therefore, the volume's editor(s) should establish 
strict deadlines, or collect the articles during the conference and have them revised on the spot. If a delay is 
unavoidable, one should encourage the authors to update their contributions if appropriate. The editors of 
proceedings are strongly advised to inform contributors about these points at an early stage. 
The final manuscript should contain a table of contents and an informative introduction accessible also to 
readersnot particularly familiar with the topic of the conference. The contributions should be in English. The 
volume's editor(s) should check the contributions for the correct use oflanguage.At Springer-Verlag only the 
prefaces will be checked by a copy-editor for language and style. Grave linguistic or technical shortcomings 
may Iead to the rejection of contributions by the series editors. A conference report should not exceed a total 
of soo pages. Keeping the size within this bound should be achieved by a stricter selection of articles and not 
by imposing an upper Iimit to the length of the individual papers. Editors receive jointly 30 complimentary 
copies of their book. They are entitled to purchase further copies of their book at a reduced rate. As a rule no 
reprints of individual contributions can be supplied. No royalty is paid on Lecture Notes in Physics volumes. 
Commitment to publish is made by Ietter of interest rather than by signing a formal contract. Springer-Verlag 
secures the copyright for each volume. 

The Production Process 

The books are hardbound,and the publisherwill select qualitypaper appropriate to the needs of the author(s). 
Publication time is ab out ten weeks. More than twentyyears of experience guarantee authors the best possible 
service. To reach the goal of rapid publication at a low price the technique of photographic reproduction from 
a camera-ready manuscript was chosen. This process shifts the main responsibility for the technical quality 
considerably from the publisher to the authors. We therefore urge all authors and editors of proceedings to 
observe very carefully the essentials for the preparation of camera-ready manuscripts, which we will supply 
on request. This applies especially to the quality of figures and halftones submitted for publication. In 
addition, it might be useful to Iook at some of the volumes already published. As a special service, we offer free 
of charge LATEX and TEX macro packages to format the text according to Springer-Verlag's quality require­
ments. We strongly recommend that you make use of this offer, since the result will be a book of considerably 
improved technical quality. To avoid mistakes and time-consuming correspondence during the production 
period the conference editors should request special instructions from the publisher weH before the beginning 
of the conference. Manuscripts not meeting the technical standard of the series will have to be returned for 
improvement. 

For further information please contact Springer-Verlag, Physics Editorial Department II, Tiergartenstrasse 17, 
D-69121 Heidelberg, Germany 



Barnabas Apagyi Gabor Endredi Peter Levay (Eds.) 

Inverse and Algebraic 
Quantum Scattering Theory 

Proceedings of a Conference 
Held at Lake Balaton, Hungary, 
3-7 September 1996 

~Springer 



Editors 

Barnahcis Apagyi 
Gabor Endn!di 
Peter Levay 
Department of Theoretical Physics 
Technical University of Budapest 
Budafoki ut 8 
H -1111 Budapest, Hungary 

Cataloging-in-Publication Data applied for. 

Die Deutsche Bibliothek - CIP-Einheitsaufnahme 

Inverse and algebraic quanturn scattering theory : proceedings of 
a conference held at Lake Balaton, Hungary, 3 - 7 September 1996 I 
Barnabas Apagyi ... ( ed. ). 
Barcelona ; Budapest ; Hong Koog ; London ; Milan ; Paris ; Santa 
Oara ; Singapore ; Tokyo : Springer, 1997 

(Lecture notes in physics ; Vol. 488) 
ISBN 978-3-662-14147-2 

ISSN 0075-8450 
ISBN 978-3-662-14147-2 ISBN 978-3-662-14145-8 (eBook) 

DOI 10.1007/978-3-662-14145-8 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, re-use of illustra­
tions, recitation, broadcasting, reproduction on microfllms or in any other way, and 
storage in data banks. Duplication of this publication or parts thereof is permitted only 
under the provisions oftheGerman Copyright Law of September 9, 1965, in its current 
version, and permission for use must always be obtained from 
Springer-Verlag Berlin Heidelberg GmbH 
Violations are liable for prosecution under the German Copyright Law. 

©Springer-Verlag Berlin Heidelberg 1997 
Originally published by Springer-Verlag Berlin Heidelberg New York in 1997 

Softcoverreprint ofthe bardeover 1st edition 1997 

The use of general descriptive names, registered names, trademarks, etc. in this publica­
tion does not imply, even in the absence of a specific statement, that such names are exempt 
from the relevant protective laws and regulations and therefore free for general use. 

Typesetting: Camera-ready by the authors/editors 
Cover design: design &production GmbH, Heidelberg 
SPIN: 10550730 55/3144-543210- Printedon acid-free paper 



Preface 

Inverse quantum scattering theory has proved to be one of the most fruit­
ful discoveries in physics. It provides madel-independent microscopical in­
teractions in quantum physics and supplies fundamental theoretical tools to 
solve problems in nonlinear physics. Founded in the 1950s, inverse quantum 
scattering theory has originated from the spectral theory of the Schrödinger 
equation or, more precisely, the Sturm-Liouville operator. It soon became 
the heart of the inverse scattering transform, enabling tremendous technical 
applications such as wave propagation, light transmission through optical fi­
bres, and so on. However, its original goal to derive quantum potentials from 
observables has been reached only in recent decades by suitable modifications 
of the theory. Also, other quantum inversion schemes have been developed. 
One of the purposes of this volume is to give an account of this progress. 

Algebraic quantum scattering theory is a relatively new topic. It is capa­
ble of deriving scattering phase shifts (S-matrix elements) via specifying a 
noncompact dynamical symmetry group characterizing the colliding system. 
Those phase shifts can then be inverted into potentials or, alternatively, a 
special realization of the group generators can be chosen to get analytically 
known ( exact) potentials. This is achieved by using a functional relation be­
tween the Casimir operators and the Hamiltonian of the system exhibiting 
the underlying symmetry. On the other hand, supersymmetrical quantum 
mechanics generates also exactly solvable ( analytical) models and its basic 
equations can formally be cast into a form which is in correspondence with 
those of the quantum inverse scattering theory. Thus these three subjects 
turn out to be intimately connected with each other. The other purpose of 
this volume is to manifest this connection explicitly. 

Distinguished scientists, mathematicians, and physicists from all over the 
world, came together at Lake Balaton to discuss current developments and 
problems of inverse and algebraic quantum scattering theory including super­
symmetrical quantum mechanics, and to present new contributions in these 
beautiful topics of quantum scattering theory. The financial help of the spon­
sors (bme, otka, nefim, omfb, fefa, ictp) greatly contributed to the pleasant 
and fruitful atmosphere of the conference. The participants have decided to 
meet regularly every three years and to dedicate this volume to the memory 
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of the late Professor Harry Fiedeldey whose research work covered almost all 
the topics of the conference. 

Budapest, April 1997 

B. Apagyi 
G. Endredi 

P. Levay 



In Memory of Harry Fiedeldey 
[1932-1994] 

These conference proceedings are dedicated to the memory of Professor Harry 
Fiedeldey, an outstanding contributor to the area covered by this conference, 
namely inverse and algebraic quantum scattering theory. 

Harry Fiedeldey passed away unexpectedly on 16th, September 1994 from a 
heart attack. He was born in Indonesia on 17th, December 1932. His elemen­
tary school education was interrupted by World War II and he miraculously 
survived several years in a Japanese concentration camp, being held cap­
tive until the end of the war. His schooling "continued" in Holland where he 
managed to make up the lost years and then finish his first degree in physics 
at Groningen University in 1954. Thereafter he emigrated to South Africa 
where he obtained his MSc degree at Pretoria University and his DSc at the 
University of Stellenbosch under the supervision of Prof. W. E. Frahn. 

His acuteness of rnind, his strong motivation, his infectious enthusiasm, and, 
most of all, the quality and quantity of his contributions, have made Harry 
Fiedeldey a recognized authority in all the fields he has worked in. The cre­
ativeness of his mind and the depth and range of his knowledge was aston­
ishing. His research work covered a wide range of topics in nuclear physics, 
few-body physics, and inverse and algebraic quantum scattering theory. 

While topics in nuclear and few-body physics were always on Harry Fiedel­
dey's agenda, the inverse scattering problern was one of his life-long interests 
and an area in which he was considered a pioneer. In collaboration with oth­
ers he developed new inversion methods which have been applied to quantum 
processes in few-body physics, nuclear physics, atomic physics, and condensed 
matter physics. The fixed-energy inversion methods he pioneered with Profes­
sor Reiner Lipperheide (analogous to those for the fixed angular momentum 
Bargmann potentials and based on rational or nonrational forms of the scat­
tering function) are perhaps the most successful inverse scattering methods 
in nuclear physics. Further examples of his invaluable contributions in the 
field are his early work on inversion with separable potentials and later for 
more general nonlocal potentials, the role of regularization in inversion and 
his investigations of supersymmetry with respect to a generalization of Levin-
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son's theorem and its consequences for a variety of physical systems such as 
the three-quark and o:-o: systems. Harry Fiedeldey also published several im­
portant papers in algebraic scattering theory and its application to heavy-ion 
scattering. 

In the field of inverse scattering theory he did some of his most original and 
seminal work. Here are but few of the highlights of his contributions in the 
field: 

- The introduction of the fixed-energy inversion method based on alge­
braic rational and nonrational scattering functions having exactly solv­
able potentials and the corresponding transformations for the solution of 
the inverse scattering problem. This allows the application of inversion 
methods to realistic situations, which has led to the determination of a 
large variety of scattering and optical potentials in atomic and nuclear 
physics. Such algebraic methods were later also applied to the investiga­
tion of surface profiles of solid and liquid matter via neutron and x-ray 
specular reflection. 

- The simultaneaus application of inversion methods to two- and three­
body problems, for which a specific transformation was introduced. This 
allowed the determination of quark-quark forces from baryon spectra. 

- The clarification of the "phase problem" in neutron specular reflection 
through a combination of a logarithmic dispersion relation between re­
flectivity and reflection phase with the Darboux inversion scheme. 

- Proposals for an experimental method to measure the reflection phase 
directly. In one method the phase is determined by the dwell time of the 
neutron in the sample, which can be obtained via absorption measure­
ments. In another method, the interaction of the neutron spin with an 
external magnetic field is used to determine the reflection phase via the 
interference of the reflections from the external magnetic field and from 
the scattering profile of the sample. 

The untimely death of Harry Fiedeldey at the height of his scientific career 
is a great loss to the quantum inverse scattering community. The work of 
this exceptional man and his unbounded love for scientific endeavour was, 
and will continue to be, a constant source of inspiration to all who had the 
privilege of knowing him and learning from him. 
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N ew Inverse Spectral Problem 
and Its Application 

Anne Boutet de MonveP• 2 and Vladirnir Marchenko2 

1 Institut de Mathematiques de Jussieu, CNRS UMR 9994, 
Laboratoire de Physique mathematique et Geometrie, case 7012, 
Universite Paris 7 Denis Diderot, 2 place Jussieu, F-75251 Paris Cedex 05 

2 B. Verkin Institute for Low temperature Physics, 
47, Lenin Avenue, 310164, Kharkov, Ukraine 

1 

The origin of inverse spectral problerns lies in natural science, but the prob­
lerns thernselves are purely rnathernatical. At the beginning these problerns 
attracted attention of rnathernaticians by their nonstandard physical con­
tents. But we think that today their place in rnathernatical physics is deter­
rnined rather by the unexpected connection between inverse problerns and 
nonlinear evolution equations which was discovered in 1967. This discov­
ery was rnade in a farnous paper by Gardner, Greene, Kruskal and Miura 
(1967). They found that the scattering data of a farnily H(t) ( -oo < t < oo) 
(i.e. the reflection coefficients r( k, t) and norrnalizing coefficients m(ik1, t)) of 
Schrödinger operators 

d2 
H(t) =- dx2 + u(x, t) 

satisfy linear differential equations 

if the potentials u(x, t) are rapidly decreasing solutions of the KdV equation 

Üt = 6uux - Uxxx (1) 

This fact allows to solve the Cauchy problern 

u(x, 0) = q(x) (2) 

for the KdV equation using inverse scattering problern according to the fol­
lowing scherne: 

q(x)-+ r(k, 0), m(ik1, 0) 

-+ r(k,t) = r(k,O)e8ik 3 t, m(ik1,t) = m(ik1,0)e8ik 3 t 

-+ u(x, t). 



2 Anne Bautet de Monvel and Vladimir Marchenko 

The condition of rapid decrease of the initial function q( x) is absolutely 
necessary for this method to apply, because all the notions of scattering 
theory (Jost solutions, reftection coefficients, normalizing coefficients, etc.) 
are defined only for operators with the potentials tending to zero when lxl-> 
oo. We will generalize this method to initial functions q(x) which do not 
vanish at infinity. 

For this purpose we solve an inverse spectral problem different from the 
inverse scattering problem. This new inverse problem for the initial data q(x) 
under consideration play the same role as does the inverse scattering problern 
for initial data vanishing at infinity. 

2 

Let us consider the one-dimensional Schrödinger operator 

d2 
L = --+q(x) 

dx 2 
( -oo < x < oo) 

with real continuous potential q(x) and denote by c(A, x), s(>., x) the solutions 
of the equation 

with initial data 

c(>., 0) = s'(>., 0) = 1 

c'(>., 0) = s(>., 0) = 0 . 

According to Weyl's theorem for allnonreal z the equation 

L[y] = zy 

has solutions 
1/J±(z, x) = c(vz, x) + m±(z)s( jZ, x) 

belonging to the Hil bert spaces Lz (IR±) (IR+ = ( 0, oo), IR_ 
respectively: 

1/J±(z, x) E Lz(IR±) . 

(3) 

(-oo,O)) 

The functions m± ( z) are connected with the spectral functions P± (t-t, oo) of 
the operators L± ( oo) generated in the spaces L2 (IR±) by the operator L and 
the boundary condition y(O) = 0. That is: 

where a± are some real numbers. 
Instead of two functions m± ( z) and two solutions 1/J± ( z, x) we introduce 

a single function 
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(..\) _ { m+(>. 2) Im>.> 0 
n - m_(>. 2 ) Im>.<O (5) 

and a solution of the equation (3) 

~(..\, x) = c(>., x) + n(>.)s(>., x) = { ~~~;~: ~~ ~:; ~ ~ 
which obviously belongs to the space L2 (IR+) when Im,\ > 0 and to the 
space L2(IR_) when Im,\ < 0. The function n( >.) and the solution ~( >., x) 
will be called the Weyl function and the Weyl solut.ion respectively. 

The functions m± ( z) are holomorphic outside of the real axis IR and 
their sets of singularities respectively coincide with supports of the measures 
P± (tJ, oo). From ( 4) it follows that the function n( >.) is holomorphic outside 
of the real and the imaginary axes and its singularities which lie on the 
imaginary axis form a set 

where 
.f?± ={>.I ±Im>.> 0, >. 2 E supp(dp±(tJ,oo))} 

Since c( >., x) and s( >., x) are even entire functions of the variable ,\ for 
every fixed x the solution ~( >., x) is holomorphic wit.h respect to >. everywhere 
outside of the set .fl(i) U IR. 

One of the key theorems is the following (Marchenko 1994) 

Theorem 2.1 For any E > 0 the Weyl function n(>.) and the Weyl solution 
~( >., x) are holomorphic in the domain 

A(s) = {>. I dist(>., il(i) U IR) 2': E} 

and satisfy there the equalities 

{ 
lim (i..\)- 1 n(>.) = 1 

1>-1-+oo 
lim e-i>.x~(>.,x) = 1 

1>-1-+oo 
(6) 

In general the equalities (6) may not be true when E = 0. The necessary 
condition for this is the absolute continuity of the spectral functions P± (tJ, x) 
in the neighborhood of infinity. A simple sufficient. condition is the following 
corollary of Theorem 1: 

Corollary 1 lf 
(i) the potential q( x) is bounded from below: 

inf q(x)>-oo, 
-oo<x<oo 

(ii) the spectral functions P± (tJ, x) are twice differentiable in a neighbor­
hood of +oo and for some b > 0 
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then the equalities (6) hold fort:= 0. 

3 

From (4) it follows that there exist nontangentiallimit values almost every­

where on the real axis 

where 
d 

v±(t) = 71' dt (P±(t, oo)) ~ 0 . 

Therefore the function n( A) has nontangentiallimit values almost everywhere 

on the real and imaginary axes 

n(t ± iO) = ±u±(t2) + i 
1
!

1 
v±(t2), 

n(it ± 0) = { u+( -t2) 2± iv:l"( -t2) 2 
-tL ( -t ) ± lV_ ( -t ) 

-()() < t < ()() 

O<t<oo 
-00 < t < 0 

(7) 

In particular the solutions '1/;(t + iO, x ), '!/;( -t + iO, x) are linearly indepen­

dent if 

dd P+ ( r, oo) I > 0 , 
T T=t2 

-()() < t < ()() 

and for such values of t we get 

'1/;(t- iO, x) = A'!j;(t + iO, x) + B'!j;( -t + iO, x) 

where the coefficients A, B can be computed using the following system of 

equations 

{ A+B=l, 
A n(t + iO) + B n( -t + iO) = n(t- iO) 

When we solve this system we find that 

n(t- iO)- n( -t + iO) u+(t2 ) + u_ (t 2 ) - irfr[v+W) + t'- (t2 )] 

A = n(t + iO)- n(-t + iO) =- 2i 1;1v+(t 2 ) 

n(t + iO)- n(-t- iO) u+(t 2 ) + tL(t 2 ) + irif[v-t(t 2)- v_ (t 2 )] 

B = n(t + iO)- n( -t + iO) = 2ifhv+(t2 ) 

Thus we arrive to 
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Lemma 3.1 For alt t E ( -oo, oo) satisfying the condition 

the equality 

A - 1 (t)7ji(t - iO, X) = 1j!(t + iO, X)+ d(t)l/'( -t + iO, X) 

holds and ld(t)i < 1. Here 

B(t) u+(t2) + u_(t2) + irfr[v+(t2)- v_(t 2 )] 

d(t) = A(t) =- u+(t2) + u_(t 2)- irfr[v+(t2) + v_(t2 )] 

and 

A _1() 1 d( ) 2it v+(t 2 ) t= + t= x--
n(t- iO)- n( -t + iO) ltl 

Setting 

we find that 

2i.X 
N(.X) = n(.X)- n( -.X) 

A- 1(t) = 1 + d(t) = N(t- iO) v+l;r) 

(8) 

(9) 

The main ingredient is a special factorization of the functions N(.X) and 
1 + d(t). 

As it is known 

00 

1 J dp(ft) 
m+(z)- m_(z) =- ft- z 

-00 

where the nondecreasing function p(ft) is the upper diagonal element of the 
spectral matrix-function of operator generated by L in the Hilbert space 
L2(-oo,oo). 

This function has also another representation: 

{ 
00 } 1 1 1 t 

= C exp -- -- - -- 8 t dt 
m+ ( z) - m_ ( z) 1r f ( t - z 1 + t2) ( ) 

-00 

where 

o(t) =arg{ m+(t + iO)- m_ (t + iO)} 

and Cis a positive number. According to (5) and (8) it follows from this that 
we have 
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where 

and 

00 

lmA J 2iA 
N(A) = -I lmA I Jl,- A2 dp(Jl,) 

-oo 

TJ(t) = 8a(t)- 8(t) 

8a(t) = arg(iv't + iO) = { ~ 0 < t < 00 
0 7r -00 < t < 

Let us divide the set Q(i) into two disjoint subsets 

n1 = {e 1 e E n(i), -e rt. n(i)} 

n2 = {e 1 e E n(i), -e E n(i)} 

Further we suppose that 
A) The conditions of Corollary 1 hold. 
B) dist(S11,Q2) > 0. 

(10) 

C) The set il2 can be covered by a finite number of mutually disjoint 
intervals Ll1 on each of which 

sup 8(t) - inf 8(t) < 1r 
tE..:lz tE..:lz 

Then without loss of generality we can assume tha.t the functions P± (Jl,, oo) 
are twice differentiahte on the whole positive semiaxis and 

d 
oo > de P± ( e, oo) > o (0 < e < oo) 

In this case TJ(t) = 0 in some neighborhood of -oo and the formula. (11) can 
be transformed to the form 

N(A) = exp{ ~ J ,:'l, dt} . 
-oo 

The set ( -oo, 0] \ nr' where nr = {e I e E Ql}, consists of a. finite or 
denumerable family of disjoint intervals ( -a~, -b~): 

( -oo, 0] \ nr = u ( -ak' -br) 
k 
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Lemma 3.2 Each interval (-a~,-b~) splits into two intervals (-a~,-cO, 
( -c~, -bÜ so that 

1J(t) = { 0 t E (-a~, -cp 
1r t E ( -ck, -bk) 

( -c~ E [ -a~, -b~] and one of the intervals may be empty). 

Let us denote by Xl (~), X2(~), X3(~) the characteristic functions of the 
sets il1, il2, Uk ( -c~, -b~) and by B( ~) the function 

{ rfu Re~= 0 
B(~) = .1.. 

lEI Im~= 0 . 

Lemma 3.3 (factorization) The function N(>..) can be factorized as fol­
lows 

N(>..) = a(>..)a( ->..) 

where 

a(>..) = rr (~bk- >..) exp ~{- Jioo ~(~)B(~) d~ + Joo ~(Ü B(~) d~} 
lCk - A 27r ~ - A ~ - A 

k . 
-100 -oo 

From (9) and Lemma 3 it follows that for t E ( -oo, oo) we have 

V (t 2 ) 
A- 1(t) = 1 + d(t) = a(t- iO)a(-t + iO)T 

and because 

00 

a(t- iO) _ _.!._ J ( 1 _ 1 ) . _ -i'7(t2)11(t) 
a(t + iO) - exp 27r e- t + iO e- t- iO ~(le)B(e) de - e ' 

-oo 

a(t + iO)a( -t + iO) > 0 

then 

1 + d(t) = a(t- ~O) a(t + iO)a( -t + iO) v+(t2
) = e-i7](t2 )ll(t) 11 + d(t)l 

a(t + 10) ltl 
Assuming 

00 

b(>..) = exp 2i7r J In~~~ ~(~)I d~ 
-00 

we find that 
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and 

11 d(OI = b(t- iü) 
+ b(t + iO) 

A_ 1(t) = 1 + d(t) = a(t- iO)b(t- iO) 
a(t + iO)b(t + iO) 

So we get the following result: 

Theorem 3.1 The function A-1(t) = 1 + d(t) has the following representa-
tion 

where 

1 d t _ R(t- iO) 
+ ( ) - R(t + iO) ( -oo < t < oo) 

R()..) = a()..)b()..) = IJ (~bk- )..) exp ~{ Joo TJ(e)B(~) + ilnJ1 + d(~)l d~ 
lCk - A 21T ~ - A 

k -00 

_ .J [2x,(€) + x,(<J];~'l- x,(<Jx,(€')' O(<) d€} . 

-100 

The singularities of the function R()..) lie in the sei Uk { ick} U J.?(i) U IR and 

IR(t + iO)I =IR( -t + iO)I 

lim R(.>..) = 1 . 
i>.j--.oo 

(-oo < t < (x:>) 

From Theorem 2 and Lemma 1 it follows that for all t E ( -oo, ()0) 

R(t- i0)7j>(t- iO, x) = R(t + i0)1j>(t + iO, x) + R( -t + i0)7j>( -t + i0)1·(t) (12) 

where 
R(t + iO) 

r(t) = R( -t + iO) d(t) 

and 

Jr(t)J = Jd(t)J < 1 . 

4 

The function 
g(.>..) = g(.>.., x) = e-i.>..x R()..)7j>(.>.., x) 

is holomorphic outside of the real axis and of the set J.?(i) UD (where D = 

uk {ick}) which lies on the imaginary axis. 
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Lemma 4.1 The function g(A) satisfies the equality 

lim g(A) = 1 
1>.1-+oo 

(13) 

in the who/e complex plane and uniformly in every strip I Re Ai ::; M it satis­
fies the equality 

X 

lim iA(g(A) -1) = R(oo)+ -2
1 jq(t)dt , (14) 

IJm>. 1-+oo 
0 

where 

R(oo) = lim iA[R(A)- 1] . 
I Im>. 1-+oo 

As the function g(A) has continuous Iimit values g(t ± iO) for all t E 
( -oo, oo) then from (13) and the integral Cauchy formula it follows that 

00 

g(A)= 1 +~ J g(t+iO)-g(t-iO)dt+~j g(e) de 
27rl t - A 27TI e - A 

-oo r 

where the system of closed clockwise oriented contours r envelops the set 
.f.?(i) UD. Because of .f.?(i) UD = .f.?2 U (.f.?1 UD) and dist(.f.?2, Q 1 UD) > 0 
we can change the system r to two systems r2 and rl of nonintersecting 
contours enveloping the sets .f.?2 and .f.?1 UD respectively. The conditions A), 
B), C) make it possible to shrink contours of the system F2 to the set Q 2 and 
as a result to obtain the equality 

From the equality 

and formula (11) it follows that 

ioo . 

2~i J :~~ de = J iB( ~t~e~ 2ttx g( -t)XI(t)R( -t)- 2 d(B( -t)p(t2 )) 

Ft -ioo 

From the equalities thus obtained and formula (12) it follows that 
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00 . 

g(A) = 1- _21. J g( -t + i0le-2Jtx r(t) dt 
1rl t-

-00 

ioo 

+ j iB(~t~e~2itx g(-t)xl(t)R(-t)-2d(B(-t)p(t2)) 

-ioo 

ioo 

1 J g(t- 0) - g(t + 0) ( ) l +-2 . , X2 t ct 
1rl f- A 

(15) 
-100 

and 

-oo 

ioo . J ig( -t)e-21tx B(t) 
- ~ X2(t) dt t+ 

-ioo 

ioo 

1 J g(t- 0)- g(t + 0) ( ) d +-2 . vp c X2 t t 
1rl t + <, 

(16) 
-ioo 

where !(~) denotes the half-sum of nontangent limit values of the function 
g( -A) when A---+ ~ E Q(i) U ( -oo, oo), and vpf denotes the principal value 
of the integral. 

As the function g( -A) is holomorphic on the set Q1 UD then 

and from (12) and the equality lr(~)i2 = r( -~)r(~) it follows that 

!(~) = ei{xPo(~)- 1 [Yo(~) + ~lr(l~l)l Yo(-~)J ( -oo < ~ < oo) 

where 

The following Lemma 5 is a direct consequence of (7) and Theorem 2: 

Lemma 4.2 The Iimit values of the function g(A) on the set Q 2 are con­
nected by the equality 

where 
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Let us introduce the functions 

y(e) = y(e, x) = Yo(e)xo(e) + Yl(e)xl(O + Y2(e)x2(e) 

P(e) = Po(e)xo(e) + XI(e) + P2(e)x2(e) 

and the measure 

where xo(e) denotes the characteristic function of the set ( -oo, oo ). Then we 
can write (15)-(16) in the form 

J y(e)p(e) e-i~x 
g(A) = 1- i({ _ A) {xo(e)- o(e)(XI(e) + x2(e))} dp(e) 

y(e) + { B(e)m(e)x2(e) + ~IP(IWI xo(e)} y( -0 + 

J p(e)e-i(~+l})xP(1J) + vp i(e + TJ) Y(1J) {xo(17)- B(17)(x1 (17) + X2(17))} dp(17) = 

= p(e) e-i€'" . (17) 

From the first equality and Lemma 4 it follows that 

X 

R(oo)+~ J q(e) de = J y(e, x)p(e) e-i~x {xo(e)- B(e)(Xl(e) + X2(e))} dp(e) 
0 

and 

q(x) = 2 ddx J y(e, x)p(e) e-i~x {xo(e)- B(e)(XI(O + X2(0)} dp(e) . (18) 

For every fixed x E ( -oo, oo) the function y(O = y(e, x) belongs to the 
space L2( dp(e)) and satisfies equation (17), whose unique solvability can be 
proved in the same way as in (Marchenko 1987). 

The functions p(e), m(e) and the measure dp(e) are called the spectral 
data of operator L. The above arguments thus give the following theorem: 
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Theorem 4.1 The spectral data p(O, m(e), dJ.L(O define uniquely the op­
erator L. The potential q(x) can be reconstructed by the formula (18) where 
y(O E L2(dJ.l(~)) is the solution ofthe equation (17) that is uniquely solvable 
in the space L2(dJ.L(0). 

5 

Theinverse problern we consider (reconstruction ofthe potential q(x) by the 
spectral data p(~), m(e), dJ.l(~)) allows to solve the Cauchy problern (1)-(2) 
if operator L with the potential q( x) = u( x, 0) satisfies the conditions A), B), 

C). Replacing the function p(~) in (17) by p(~, t) = p(~) e4iE't we get a family 
of equations depending on the parameters x, t. It follows from the results of 
(Marchenko 1987) that for any real x, t the respective equation has a unique 
solution y(~;x,t) = y(O E L2 (dJ.l(~)) and the function 

u(x, t) = 2 d~ J y(~; X, t)p(O e-i€(x- 4et) {xo(~)- e(O(Xl(O + X2(0)} dJ.l(~) 

will satisfy KdV equation. 
As u(x, 0) = q(x) according to Theorem 3 then the function u(x, t) is the 

solution of Cauchy problern (1)-(2). So the scheme of solving the Cauchy 
problern remains the same 

q(x)---+ m+(z), m_(z) 

---7 p(~), m(e), dJ.L(O 

---+ p(~) e4i€'t, m(~2), dp(~) 

---+u(x,t). 
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Inverse Problem on the Entire Line and Some 
Connected Questions of Spectral Theory 

B. M. Levitan 

U niversity of Minnesota 

Abstract. In this paper we consider several separate questions for one-dimensional­
Schrödinger operators on the entire line. The paper consists of an Introduction, 
seven short Sections and three Appendices. Each of these Sections and Appendices 
is almost independent. 

0 Introduction 

This paper contains several results on the spectral theory of Schrödinger 
(Sturm-Liouville) operators on the entire line: 

-y" + q(x)y = >.y, -oo < x < +oo. (0.1) 

In this paper, q( x) is supposed continuous on ( -oo, +oo) and real. 
In Section 1, we present some fundamental results in the theory of equa­

tion (0.1). 
In Section 2, we consider a necessary and sufficient condition for the eve­

ness of the potential q( x). This condition can be expressed in a simple form: 

(0.2) 

( for definition of P12 ( >..) see Section 1). The proof of the necessity of condition 
(0.2) is well known and is trivial. Unfortunately, we don't know an elementary 
proof of the sufficiency. Our proof of sufficiency of the condition (0.2) is 
based on the integral equation of the inverse problern for a one-dimensional 
Schrödinger operator on the entire line from the spectral matrix-function. 

In Section 3, we consider the Cauchy problern 

fJ2u fPu 
[)t2 = [)x2 - q(x)u (0.3) 

uit=O = f(x), 
au 
at lt=a = o. (0.4) 

As it is known from the authors previous investigations, explicit formulas 
for the solutions ofthe problern (0.3)-(0.4) are very useful in different spectral 
problems for the equation (0.1). 
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In Section 4, we prove the asymptotic expansion of the function w( x, t, x) 
for fixed x as t--+ 0. The function w(x, t, s) is crucial for solution of equation 
(0.3) and is defined in Section 3. The final result about asymptotic expansion 
of w(x, t, x) isn't new, but the method seems tobe new. 

Section 5 is auxiliary for Sections 6 and 7. We give there a short intro­
duction to the theory of finite gap potentials. Our method is based on the 
inverse problern on the entire line from the spectra.l matrix.The manifold of 
the finite gap potentials obtained by our method coincides with the manifolds 
obtained in the papers of S. Novikov [7], P. Lax [8], and J. Moser [9] ,by using 
other methods. 

In Section 6, we introduce important functions which present a true gen­
eralization of the classical Floquet solutions. In the case of periodic finite gap 
potentials, the formula (6.1) is given in B. Dubrovin's paper [12]. 

In Section 7 is proved a general trace formula (7.4) for real finite gap 
potentials. A formula close to (7.4) was obtained earlier in the case of a 
periodic potential by McKean- Moerbeke ([13], corollary 1 and 2, page 257). 

In Appendix I we discuss how trace formulas (7.5) and (7.6) can be used 
in studying the infinite gap potentials. 

In Appendix II we compare the functions (6.1) with the classica.l Floquet 
solutions of the Hili equation. 

Finally, in Appendix III we obtain the asymptotic formulas for the entries 
of the spectral matrix. Our proof is based on the formula (3.6) and special 
Tauberian theorems (see [10], [14] ). 

1 Necessary information about the spectral theory 
of the Schrödinger (Sturm-Liouville) operator on the 
entire line 

All problems we study in this paper are connectecl with the spectral theory 
of the operator 

l(y) = -y" + q(x)y, -oo < x < +oo 

in the space .C 2 ( -oo, oo). 
We suppose that q(x) (the potential) is real and continuous in (-oo,oo). 
Denote (in this section and hereafter) by 0( x, A) and <p( x, A) the solutions 

of equation 
-y" + q(x)y = Ay 

satisfying the initial conditions: 

- oo < :z: < +oo 

0(0, A) = <p1(0, A) = 1, O'(O, A) = <p(O, A) = 0. 

(1.1) 

According to a classical theorem of H. Weyl ( see e. g. [1], [2] ),there exist 
functions m1 (A) and m2 (A) regular in the upper half-plane such that for 
ImA > 0 
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1/J1(x, -\) = B(x, -\) + m1(-\)<p(x, -\) E 1:2( -oo, 0) 
1/J2(x, -\) = B(x, -\) + m2(-\)<p(x, -\) E 1:2(0, +oo). 

It is easy to see that 

W(1/J1, 1/Jz) = 1/J11/J~ -1/J21/J~ = m2(-\)- m1(-\). 

The functions m 1 (-\) and m 2 (-\) are known as Weyl-Titchmarsh functions ( co­
efficients). Troughout this paper we will suppose that the Weyl-Titchmarsh 
functions are unique (disregarding constant factors). This assumption is not 
necessary in our investigations, but Ieads to some simplifications. If m 1 ( A) and 
m 2 (-\) are unique, then the resolvent R(x, Y; -\) oft.he operator l = -D2 +q(x) 
is also unique and has the form 

{ 

1/1 2(x,>.).p,(y,>.) if y <X 
m,(>.)-m2(>.) ' -

R(x, y; -\) = 
.p,(x,>. 1/1 2 y,>. if y > X . 
m 1 >. -m2 >. ' 

The following theoremwas proved by H. Weyl ([1], [2]): 
To every equation (1.1} corresponds a symmetric nondecreasing matrix­

function 

( Pu(-\) P12(-\)) (-oo < A < oo) 
P12(-\) P22(-\) ' 

such that for every smooth function f( x) with compact support 

f(x) = 1: {F(-\)B(x, -\)dpu(-\) + [F(-\)<p(x, -\)+ 

G(-\)B(x, -\))dp12(-\) + G(-\)<p(x, -\)dp22(-\)}, (1.2) 
where 

F(-\) = 1: .f(x)B(x, -\)dx, G(-\) = 1: f(x)<p(x, -\)dx. 

Remark 1. 
As the matrix p(-\) is symmetric and nondecreasing, the inequality 

(P12 ( L1) )2 :S Pu ( L1)p22( L1) 

is valid. Here L1 = (o·,ß),Pjk(L1) = Pjk(ß)- Pjk(a:); a, ß are points of 
continuity of the martix p(-\). 

Remark 2. 
In many applications the following formulas are useful: 

where 

1 jß Pjk(ß)- Pjk(a:) = !im- Mjk(x +zu) dx. 
U-->01!" a 

Mu(z) = (m1(z)- m2(z))- 1, 
Mtz(z) = 1/2(mi(z) + m2(z))(m1 (z)- m2(z))- 1 

M 22 (z) = m1(z)m2(z) . 
m1(z)- m2(z) 

Formulas (1.3) are colled Titchmarsh-Kodaira's formulas. 

(1.3) 



16 B. M. Levitan 

2 The evenness condition of the potential 

Theorem. The necessary and sufficient condition for evenness of the poten­

tial q( x) is: 
(2.1) 

Proof. a) Necessity. Denote by .C~(-oo,oo) and .C~(-oo,oo) the subspaces 

of the Hilbert space .C 2 ( -oo, oo) of even and odd functions. If q( x) is even, 
then the subspaces .C~ and .c: are invariant with respect to the operator 
l = -D2 + q(x). This proves the necessity. 

b) Sufficiency. Our proof is based on the integral equation of the inverse 
problern on the entire line from the spectral matrix-function (see [3], [4] ). 

This equation has the form: 

sign x K(x, y) + F(x, y) + lxx K(x, t)F(t, y)dt = 0, 0 < IYI :S lxl < oo 

(2.2) 
where 

Here 

F(x, y) = F1(x, y) + F2(x, y) + F3(x, y) 

F1(x, y) = 1: cos..jXx cos..jXyd0"11 (..\), 

100 sin ..jX(x + y) 
F2(x, y) = -/X dp12(..\), 

-oo ..\ 

( ) 100 sin ..jXx sin ..jXy l (.A) 
F3 X, y = .A c 0"22 . 

-00 

O"u(..\) = {Pu(..\)- ~-/X, 
. Pu(..\), 

Independently of sign x, the potential q( x) is given by the formula 

d ·' q(x) = 2 dx 1\(x, x). 

If dp12(..\) = 0, then PJ(x, y) = 0 and 

(2.3) 

100 
" " 100 sin ..jXx sin ..jXy 

F(x,y)= _
00

cosv..\xcosv..\ydO"u(..\)+ -oo ,\ d0"22(..\). 

From the last equation follows: 

F( -x, -y) = F(x, y). 



Inverse Problem on the Entire Line 17 

Replacing x by -x, y by -y, and t by -t in equation (2.2),we obtain 

sign x [-K( -x, -y)] + F(x, y) +I: [-K( -x, -t)]F(t, y) dt = 0 (2.4) 

If the integral equation (2.2) has an unique solution, we can obtain from (2.2) 
and (2.4): 

-K( -x, -y) = K(x, y). 

In particular, for y = ;z; 

K(-x,-x) = -K(x,x) (2.5) 

From (2.3) and (2.5) follows: q(-x) = q(x) 
Remark. If the growth points of spectral matrix p(>.) have at least one 

finite limit-point, then the integral equation (2.1) has an unique solution. 

3 The auxiliary wave equation 

The integral representation of the solution of the Cauchy problern 

cPu cPu äu 
ßt2 = ßx2 - q(x)u, ult=O = f(x), atlt=O = () (3.1) 

is useful in exploring many spectral properties of the equation( 1.1) ( see e. g. 
[5]). 

The solution of the problem(3.1) can be obtained by two ways: 
i) Using the spectral expansion (1.2), the solution can be expressed in the 

form 

u(x, t) =I: cos h't{F(>.)B(x, >.) dp11 (>.)+ 

+[F(>.)<p(x, >.) + G(>.)B(x, >.)] dp12(>.) + G(>.)<p(x, >.) dpn(>.)} (3.2) 

ii) Using Duhamel theorem and successive iteration, the solution can be 
expressed in the form 

1 11x+t 
u(x, t) = -[f(x + t) + f(x- t)] +- w(;r, t, s)f(s) ds. 

2 2 x-t 
(3.3) 

As the problern (3.1) has an unique solution, from (3.2) and (3.3) we 
obtain an important identity: 

I: cosvfAt{F(>.)B(x, >.)dpn(>.) + [F(>.)<p(x, >.) + G(>.)B(x, >.)]dp12(>.)+ 

1 11x+t 
+G(>.)<p(x, >.)dp22} = 2[/(x+t)+ f(x-t)]+2 x-t w(x, t, s)f(s) ds (3.4) 

Choose now a. function g,(t) with the properties 
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1) 9c(t) is even, 
2) 9c(t) is smooth and has a compact support supp 9c(t) ~ ( -E, c). Let 

YE(Jl.) = lf 9c(t) COS Jl.idt 

be the cosine-Fourier transform of gf(t). As gE(t) is smooth, Yc(Jl.) decreases 
rapidly as J1. ---+ ±oo.Multiplying the identity (3.4) by 9c(t) and integrating, 
after some simple calculations (see e. g. [5]) we obtain 

1: f(s)ds 1: gf(vi,\){B(x, A)IJ(s, A)dp11 (A)+ 

+[so(x, A)IJ(s, A) + IJ(x, A)<,o(s, A)]dp12(A) + so(x, A)<,o(s, A)dp22(A)} = 
11x+E 11x+c iE = - 9c(s- x)f(s)ds + 2 f(s)ds w(x, t, s)gE(t)dt. 
2 X-f X-E l:r-sl 

As f( s) is arbitrary, from the last equation follows 

1: gf(vi,\){IJ(x, A)IJ(s, A)dpu (A)+ 

+[IJ(x, A)<,o(s, A) + IJ(s, A)<,o(x, A)]dp12(A) + <,o(x, A)<,o(s, A)dp22(A)} = 

_ { ~gE(x- s) + ~ ~:-sl w(x, t, s)gc(t)dt, lx- sl :SE (3.5) 
- 0 lx- sl;::: E. 

The case s = x is of particular interest. In this case it follows from (3.5) 
that 1: 9c(v~Ä)[B2 (x, A)dpu(A) + 21J(x, A)<,o(x, A)dp12(A) + <,o2(x, A)dpn(A)] = 

1 11f = -gf(O) +- w(x, t, x)gE(t)dt. 
2 2 0 

(3.6) 

4 The asymptotic expansion of w(x, t, x) 

It is well known that a product of two solutions of the equation -y" + q( x )y = 
Ay is a solution of the equation 

z111 - 4qz'- 2q' z = -4Az1 (4.1) 

Suppose that 9c(O) = g~'(O) = 0. Applying to equation (3.6) the operator 

C = D 3 - 4qD- 2(Dq), D = .!!.._ 
dx 

and using equation (4.1), we obtain: 
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1 {' 
+~P2 (x, ..\)dp22(..\)) = 2 Jo .Cx[w(x, t, x)]g,(t)dt (4.2) 

As -..\gc(-.f,\) is the cosine-Fourier transform of g~'(t), from (3.6) follows 

11' 11' 82 =- w(x, t, x)g~'(t)dt =- !'liw(x, t, x)g,(t)dt. 
2 0 2 0 ut 

(4.3) 

From (4.2) and (4.3) we get 

{' 0 82 1 {' lo OX at2 w(x, t, x)g,(t)dt = 4 lo .Cx[w(x, t, x)]g,(t)dt. ( 4.4) 

As g,(t) is arbitrary, from (4.4) follows (for 0:::::; t:::::; <) 

0 82 1 
!l!'liw(x, t, x) = -.Cx[w(x, t, x)] 
ux ut 4 

( 4.5) 

Let 1 
00 

w(x,t.x) = "L:t2k+lAk(x) (4.6) 
k=O 

Substituting ( 4.6) in ( 4.5) and comparing the coefficients in terms with 
t 2k+l, we obtain the recurrence formula 

In particular, for k = 0 

It remains to calculate A0 (x). From equation (3.'1) with f(s) 
(using Taylor's formula) 

11x+t 
u(x, t) = 1 + 2 w(x, t, s)ds 

x-t 

(4.7) 

1 follows 

1 OW lx+t = 1 + tw(x, t, x) + ---;:;-is=x (s- x)ds + O(t3 ) = 1 +tw(x, t, x) + O(t3 ). 
2 us x-t 

Differentiating this equation twice with respect tot, we obtain 

1 Existence of the asym ptotic expansion ( 4. 6) can be based on analyzing the suc­
cessive approximation of w(x, t, s). 
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ß2u 2. .. 0( ) 
012 = w + tw + t . 

From (4.8) and (3.1) fort= 0 we get 

8 
-q(x) = 2 af Wit=O· 

Using expansions (4.6) and (4.7), we obtain now 

1 
Ao(x) = - 2q(x) 

and from (4.7) 

( 4.8) 

5 N ecessary information ab out finite gap potentials 

Let -oo < ..\o < ..\1 < /J1 < ..\2,/J2 < ... < An < /Jn < +oo be 2n + 1 
arbitrary real numbers. In every interval [..\k, /Jk], k = 1, 2, ... , n choose an 
arbitrary point 6 and prescribe in it an arbitrary sign fk = ±. Define four 
polynomials: 

R(..\) = (..\- ..\o)(..\- ..\1)(..\- pl) ... (..\-An)(..\- I-ln), 

P(..\) = (..\- 6)(..\- 6) · · · (..\- ~n), 

n [-R(~j)jl/2 
Q(..\) = P(..\) .t; fj (..\ _ ~j )P'(~j) 

S(..\) = R(..\) + Q2(>.). 
P(..\) 

(5.1) 

It can be proved that S(..\) is a polynomial of clegree n + 1 with leacling 
coefficient equal to 1. The last equation in (5.1) can be written as 

S(..\)P(..\)- Q2(..\) = R(..\) (5.2) 

The intervals [..\k, p.k] are called gaps,because they are gaps in the spec­
trum of a Sturm-Liouville operator, which will be defined in the next theorem. 

Intervals adjacent to gaps are called permitted intervals. Their union 

is the spectrum of the operator which weshall define below. 
Using polynomials (5.l),clefine three functions: 

dpn(..\) = 2,.. ±~' E rr { 
1 P(>.) ,\ 

d..\ 0, XErr 
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dp12(.A) = { 21.,.. ±~' .A E er 
d.A 0, XE"er 

(5.3) 

dp22(.A) = { 21.,.. ±~' .A E er 
d.A 0, XE"er. 

These functions are entries of the spectral ma.trix of a Sturm-Liouville 
equation with a finite gap potential. The sign of the square root of R(.A) is 
defined in the following way: on the first interval (.Ao, .Al) of the spectrum 
dp~f>..) must be positive. On the following intervals of the spectrum the signs 
of [R(.A)pl2 are defined by analytic continuation. 

Theorem. 
Let 

p( A) _ ( Pn ( .A) P12 ( .A) ) 
- P12(.A) P22(.A) 

where the functions Pik(.A) are defined by equations (5.3). There exists a 
unique equation of the form 

-y" + q(x)y = .Ay (5.4) 

whose spectral matrix coincides with p(.A).(For the proof of this theorem see 
[3], [6].) 

The potential q( x) in equation (5.4) is called a. finite gap potential. This 
class ofpotentials coincides with the manifolds offinite gap potentials defined 
by S. Novikov [7], P. Lax [8], and J. Moser [9] independently and by different 
methods. 

Let t be an arbitrary real number. Consider the equation 

-y" + q(x + t)y = .Ay. 

It can be proved that for every t the potential q(x + t) is also a finite gap 
potential with the same gaps as in the case of potential q( x), but the spectral 
parameters ek and fk are moving with t : 

It is convenient to exchange the places of x and t. Put 

P(x, .A) = (.A- 6(x))(.A- 6(x)) · · · (A- ~n(x)), 

~ f·(x){-R[~·(x)]Jll 2 

Q(x, .A) = P(x, .A) L...J (.A ~ ~·(x))P/(A)i - . ' 
j=1 J >.-€ 1 (x) 

S( .A) = R(.A) + Q2(x, .A) 
x, P(x,.A) . 
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It can be proved (see [:3], [6]) that: 

P(x, .\) = P(.\)e2 (x, .\) + 2Q(.\)B(x, .\)<p(x, .\) + S(.\)<p2 (x, .\), 

Q(x, .\) = P(.\)B(x, .\)B'(x, .\) + Q(.\)[B'(x, .\)<p(x, .\) + B(x, .\)<p'(;r, .\)]+ 

+5(.\)<p(x, .\)<p' (x, .\), (5.5) 

S(x, .\) = P(.\)B'2 (x, .\) + 2Q(.\)B'(x, .\)<p'(x, .\) + S(.\)<p'2 (x, .\). 

The functions B(x, .\) and <p(x, .\) were defined in section 1. 

Differentiating equations (5.5) in x and using equation (5.4), we obtain: 

d 
dx P(x, .\) = 2Q(x, .\), 

d 
dx Q(x, .\) = S(x, .\) + [q(x)- .\]P(x, .\), (5.6) 

d 
dx S(x, .\) = 2[q(x)- .\]Q(x, .\). 

The equations (5.6) play a crucial role in the next sections. 

6 The generalized Floquet solutions 

The functions 

[ P(x, .\)] 1/ 2 { . r du } 
7/>±(x,.\) = P(.\) exp ±zJ]i(:ij Ja P(u,.\) (6.1) 

are generalizations of classical Floquet solutions of Hill's equation. 

Theorem. 
The functions 7/>±(x, .\) are solutions of equation (5.4). 

Proof. From (6.1) and the first equation in (5.6) we can obtain 

d [Q(x, .\) . y!RW] 
dx 7/>±(:r, .\) = P(x, .\) ± 1 P(x, .\) 1/>±(x, .\). (6.2) 

As 7/>±(0, .\) = 1, from (6.2) it follows that 

I Q(.\) .v!RW 
!1!±(0, .\) = P(.\) ± z P(.\) . 
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Differentiating (6.2) and using (5.6), we obtain 

.tP( >.)- Q1P-QP1 =t=iVRP1
.,, + (Q ± .JR) 2

·'· ( >.)-'~-'± x, - p2 '!-'± p 1 p 'P± x, -

_ (q(x)- >.)P2 + SP- 2Q2 =f 2iQVR.1, [Q 2 2.QVR _ ..!!_]·'· _ 
- p2 '!-'± + p2 ± z p2 p2 '!-'± -

= { [q(x)- .>.] + SP-~2- R} 7/J± = [q(x)- >.]7/J±, 

as SP- Q 2 - R = 0. 
Thus 

7/J'± = [q(x)- .>.]7/J± 

which coincides with equation (5.4). 

7 Proof of the trace formula 

Westart from the equation (6.2) of the preceding section: 

1 [Q(x,>.) ."fR{>0] 
7/J+(x, >.) = P(x, >.) + z P(x, >.) ~!+(x, >.) 

Denote 

7/J'+(x, >.) = z(x, >.) = Q(x, >.) + i JRW. 
7/J+(a:, .>.) P(x, >.) P(x, >.) 

We obtain, by differentiating: 

,{,II ,/, ,{,12 
I_ 'P+'P+- 'P+ _ ( ) \ 2 

Z - 7/J~ - q X - A - Z , 

or 
z1 +z2 +>.-q(x)=0. 

Put k = V). and let 
. ~ (Jj(x) 

z(x, >.) = zk + ~ (2ik)i. 
J=l 

Substituting (7.3) into (7.2), we get 

Equating to zero the coefficients of (2ik) -n, n = 0, 1, 2 .... , we obtain 

(7 .1) 

(7.2) 

(7.3) 
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0"1(x) = q(x), 0"2(x) = -O"~(x) = -q'(x), 0"3(x) = q11 - q2, .... 

The general formula is: 

()~ + O"n+1 + ()10"n-1 + ... + O"n-10"1 = 0, n = 2, 3, .... 

From (7.3) and (7.1) it follows that 

.k ~ O"j(x) _ Q(x, .A) . JRW 
z + ~ (2ik)i - P(x, .A) + z P(x, .A) · 

Separating the odd power of k = J). we get 

ik + ~ 0"2j+1(x) = ik- ik ~(-1)j 0"2j+1(x) = 
~ (2ik)2J+1 ~ 22J+1,AJ+1 

(7.4) 

= z V n~AJ = zk 1- - >. >. >. >. 
. lfi!\\(.A) . ( .Ao)1/2 [(1- ~)(1- E..!.) .. ·(1- h)(1- fl..!!.)l1/2 

P(x, .A) A (1 _ Et"))2 ... (1 _ Eny))2 

Dividing the last equation by ik and taking In, we get 

1 ( .A 0 ) 1 n [ ( Aj) ( /Jj) ( ~j(a::))] 2 In 1 - ~ + 2 _f; In 1 - ~ +In 1 - ~ - 2ln 1 - -.A- = 

= l [1- ~(-l)i 0"2j+1(x) l n ~ 22j+1_Aj+l · 
j=O 

Expanding ln in series we obtain: 

~ ~ ( AAQ r + t, ~ ~ [ ( ~ r + ( /J; r -2 cj ~X) rJ = 

= 2 ~ .!_ [~(-1)j O":j+1(_x) l n 
~ n ~ 22J+1_AJ+l 
n=l j=O 

(7.4) 

Comparing coefficients by the same power of .A - 1. we can obtain trace for­
mulas of arbitrary order. 

The first two trace formulas are: 

n 

Ao + L[Aj + /Jj- 2~j(x)] = q(x) (7 .5) 
j=1 

.A6 + i).AJ +PI- 2~](x)] = -~q"(;r) + q2(x). (7.6) 
j=1 
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8 Appendix I. Applications to infinite gap potentials 

Formulas (7.5) and (7.6) permit us to obtain some information about infinite 
gap potentials. Let .A 0 > -oo be fixed and suppose that an infinite sequence 
ofpairs of real numbers (.Ak, J-Lk), J-lk > Ak, k = 1, 2 .... is given on the right 
of .A0 . Suppose also that the following conditions a.re fulfilled: 

1) The pairs (.Ak, J-Ld are arranged in decreasing order, that is (p.1 - .Al) ~ 
(P.2 - .A2) ~ · · ·, and not overlapping. 

2) There exist constant positive numbers a1 and a2 such that 

00 00 

I-Aal+ 2 L)J-Ln- An)= a1, A~ + 2 L)J-L~- .A~) = a2 .. (A.l.1) 
n=l n=l 

Choosing an arbitrary number N we consider the intervals 

as gaps. In every gap let us choose an arbitrary point ~k E ( Ak, J-lk) and 
let fk = ± be chosen also arbitrarily. According to the results of Section 
5, there exists a unique potential qN(x) with prescribed .A0, prescribed gaps 
(.Ak, J-Lk), 1::; k::; N and prescribed ~k and fk. 

The estimates 

follow from the trace formulas(7.5), (7.6) and estimates (A.I.l).The first in­
equality means that the family { qN( x)} N' =l is Ulliformly bounded oll the 
elltire line.The second inequality means that the fa.mily { q~(x )}JV'= 1 is also 
bounded Oll the elltire line. From a classical theorem follows that the family 
{f~(x)}f is also bounded. Therefore the family {/N(x)} is compact (in the 
sense of uniform convergence on every finite interval). Dellote by q(x) some 
limit point of the family { qN( x)} and consider the equation 

-y" + q(x)y = .Ay, -oo < x < +oo. (A.I.2) 

The followillg question arises naturally: 
Does the spectrum (]" of equation (A.1.2) coincide with the limit of spectra 

(]" N of equations 

-y" +qN(x)y = .Ay? 

In some simple cases the answer is positive, as in the case when the distances 
between the gaps are bounded below. 
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9 Appendix II. Some remarks about the analytic 
structure of the generalized Floquet solutions 

In the case of finite gap potential with arbitrary gaps, the spectral parameters 
~j ( x) as functions of x are almost periodic functions (quasi periodir with the 
same periods for all j, see e. g.[3]). 

In order for ~j ( x) to be periodic, the gaps must be located in special 
positions. Consider now the formula ( 6.1). In this formula the factor [P( x )] 112 , 

in general case is an almost periodic function. The situation is much more 
complicated for the function 

r du 
} 0 P(u,>.)" 

(A.IJ.1) 

If >. is outside the spectrum of equation (5.4), then P( u, >.) i= 0 for allreal 
u and is almost periodic. Therefore the function 1/ P( u, >.) is also almost 
periodic. 

The expression (A.II.1) is an indefinite integral of an almost periodic 
function. There exists a notable difference between the indefinite integrals of 
periodic and almost periodic functions. Let f( x) be a periodic function with 
period a . Then 

lax f(x)dx = cox + <p(x) (A.II.2) 

where 

11a co =- f(x)dx 
a o 

and <p(x) is periodic with the same period a. 
In the case of almost periodic functions the formula (A.II.2) holds also, 

but now 

11T Co= lim -T f(x)dx, 
T->oo 0 

and generally the function <p( x) is not bounded and therefore not almost 
periodic. 2 There exist sufficient conditions for almost periodicity of the func­
tion <p(x). For example, it is enough that the Fourier exponents ofthe almost 
periodic function f( x) have a gap in some neighborhood of zero; neverthe­
less,it is hard to believe that this can happen for finite gap potentials. 

2 According to a classical theorem of H. Bohr for almost periodicity of an indefinite 
integral of an almost periodic function is necessary and sufficient the boundness 
of the integral. 



Inverse Problem on the Entire Line 27 

10 Appendix 111. Asymptotic behavior 
of the spectral matrix 

Our starting point is the formula (3.6). Having in mind some simplifications, 
we suppose that the spectrum of equation (1.1) is non-negative. After sub­
stituting Pjk(.>..), O(x,.>..). cp(x,.>..) by Pjk(J..t), O(x,J..L), cp(x,J..L), J..t = J>., the 
formula (3.5) takes the form: 

100 
gf(J..t ){ O(x, J..t )0( s, J..t )dpn (J..L) + [O(x, J..t )cp( s, J..t) + cp(x, J..t )0( s, J..t )]dp12(J..L )+ 

+cp(x,J..L)cp(s,J..t)dp22(J..L)} = 

The case s = x has special interest. In this case 

lx- si ~ E, 

!x- si;:::: E. 

1 1 r 
= 2gf(O) + 2 Ja w(x, t, x)gf(t)dt 

For x = s = 0 formula (A.III.1) gives 

(A.JI/.1) 

(A.III.2) 

(A.III.3) 

Using (A.III.3) and the method described in detail in our paper [10], it 
can be proved that 

1) the estimate pu(a + 1)- pu(a) = 0(1), a-+ +oo, 
2) The asymptotic formula 

1 
e(J..L) = -J..t + 0(1), J..t-+ +oo. 

7r 

In order to obtain the asymptotic formula for P22(J..L) differentiate the 
equation(A.II1.1) once with respect to x and once with respect tos. Putting 
then x = s = 0, we obtain 

(A.II/.4) 

where a is a constant and ß(t) is a bounded function.Using the method of 
[10], we can obtain, from (A.III.4), 

1) the estimate P22(a + 1)- P22(a) = O(a2), a-+ +oo, 
2) the asymptotic formula 

1 3 2 
P22(J..L) = 37C'J..L + O(J..t ), J..t-+ +oo. 
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The asymptotic behavior of P12(J.l) cannot be obtained, because, as we 
have seen in Section 2, dp12(J.l) can be zero; nevertheless, a strong estimate 
of P12(J.l) can be found for J.l--+ oo. At first, we have to prove the estimate 

As the spectral expansion of the operator (2.1) on the entire line can be 
obtained as a limit of the expansions on finite intervals, we can suppose that 
the spectrum of (2.1)is discrete.ln this case (see[ll], chapter 2) 

Pll(a + 1)- Pll(a) = L ak = 0(1), 
a<J.tk~a+1 

P22(a + 1)- P22(a) = L ßk = O(a2), 
a<J.tk~a+1 

P21(a + 1)- P21(a) = L akßk· 
a<J.tk~a+1 

Therefore 

Var~+ 1 {P12(J.l)}:::; L iakßki:::; ( L ar) 112 
( L ßk) 

112 

a<p~a+1 a<J.tk~a+1 a<J.t~a+1 

= O(a). (A.III.4) 

Differentiating equation (A.III.1) with respect to x and putting x = 0, s = 0, 
we have 

100 11' g,(J.l)dP12(J.l) =- a(t)g,(t)dt (A.III.5) 
0 2 0 

where 
{) 

a(t) = ox w(x, t, s)ix=•=D 

From (A.III.4), (A.III.5) and the Tauberian theorem [10] follows the estimate: 
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Abstract. This report is a review of the qualitative theory of quantum design: 
about our discoveries of new features of quantum systems by visualizing a.ll possible 
potential and wave function transformations for variations of a complete set of 
independent spectral and scattering parameters. Special attention is paid to recently 
revealed multichannel aspects of this theory. 

1 Introduction 

There was a break-through in the last years (see e.g. [1-4]) in our understand­
ing of relations between interactions (shapes of potentials) and observables 
(spectral, scattering and decay data) which form the main contents of quan­
tum mechanics. This progresswas based on the achievements ofmathematical 
formalism of the inverse problern (IP) 1 and supersymmetry (SUSY) [5-9). 

From our point of view the main worth of IP and SUSY consists in provid­
ing us with wide classes of exactly solvable models ( and often even complete 
sets of them). It is of a great importance that visualization of these models 
allows us to reveal universal and unexpected phenomena hidden before. And 
the results derived by using exact models will be valid for ever. 

The qualitative theory of quantum design for one-dimensional and one­
channel systems was almost completed: it is clear now which potential trans­
formations are necessary for the desired changes of physical properties. There 
were discovered even elementary constituents ("bricks"), which these trans­
formations are composed of [10]. 

In this report we shall remind the basic rules of one-channel spectral 
management and then emphasize the peculiarities of multi-channel general­
ization of our qualitative theory to more complicated quantum systems. This 
multichannel approach is important as universal way to reduce the multi­
dimensional and many-body partial Schrödinger equations to a system of 
coupled ordinary differential equations. 

1 This report was made in the presence of fathers-creators of IP: mathematicians 
B.M.Levitan and V.A.Marchenko from whose shoulders we have seen new phys­
ical horizons. 
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2 Golden Rules of One-Channel Spectral Control 

The rules of elementary one-channel transformations are also important con­
stituents of the quantum design for more complica.ted objects. Now we can 
predict qualitatively, without analytic formulae and computers, the shape 
of potential transformations needed for energy shift of one arbitrary bound 
state level without moving all (!) other levels in accordance with the exact IP 
and SUSY formalism (1,5,7). From the direct problern point of view it may 
seem impossible to satisfy an infinite number of these conditions. But for the 
IP and SUSY approach it is the simplest task. 

Take into account that any quantum state which we want to transform 
is more sensitive to potential perturbations at the places of its increased 
concentration (intensity of wave), that is at the bumps of standing wave. 

So, for Iifting (lowering) the chosen energy Ievel we should push the cor­
responding state by partial potential peaks (wells) at the places of its bumps. 
But these peaks ( wells) will also shift all other sta.tes and we want only one 
state to be shifted. So, there must be also compensating partial wells (peaks) 
at the places of. knots of the chosen state where this is less sensitive to poten­
tial changes. For example, to push up the Nth state, LlV(x) should possess 
N repulsive peaks and N+l attractive wells. 

In the process of motion of the chosen level the eigenfunctions of all other 
states are somewhat transformed ( although their energy levels remain sta­
ble). In Fig.l (11) the transformation of an oscillator potential by 50 potential 
peaks and 51 partial wells which shift the 50-th energy level up is demon­
strated . It is remarkable that the lower states a.re almost not perturbed 
in spite of a strong potential transformation (they coincide with the initial 
bound state standing waves on the PC screen as is shown in Fig.l). Only very 
high, near the 50th level where the oscillations of the perturbation Ll V( x) are 
"in resonance" with eigenfunction oscillations, there are more visible changes 
in bound state wave functions. 

Besides the energy levels E>.. there are other fundamental parameters, 
namely, spectral weights C>.. = "P~ (0). They play the part of levers controlling 
the space location of corresponding states (1,5,7). 

To move states in space, the universal and elementary building block 
("brick") of potential transformations is a combination of one partial weil 
and one barrier for every bump, see for the simplest example Fig.2 how the 
ground state is gathered to the origin for the initial infinite reetangular po­
tential weil (1,5,7,12). For the motion to the right (left) the barriers should 
be from the left (right) side of wells. To move the Nth state LlV(x) should 
possess N barriers and wells. During the motion all knots of the chosen state 
remain fixed in space. Only the distribution of bump sizes changes. And there 
is some recoil of all other states (tendency to separation of the chosen state 
from other ones). For very big (small) values of C>.. the last (first) bump in 
the chosen state can move far to the right (left) or be pressed into the infinite 
vertical potential wall that restricts the motion. 
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Fig. 1. Initial oscillator potential weil was perturbed to shift up only the 50th 
energy Ievel by 50 peaks at the positions of bound state wave bumps and 51 partial 
wells near its knots to keep all other Ievels exactly at t.he previous places [11] 

The universality of these rules manifests itself both in creation of new 
states ( energy Ievels) and in destruction of any chosen Ievel of the initial 
spectrumo In the Iimit C>, ..... o or ±oo there is effective annihilation of the state 
running to infinity or pressing into theinfinite wall o Analogously, the creation 
of a new state (Ievel) can be considered as being effectively brought from 
±oo by the potential perturbation with a relevant number of brickso We can 
imagine in this case that this state is "returned after its removing" a.ccording 
to the above ruleso 

Our rules of the chosen state motion a.re valid even for gathering scatter­
ing states into bound states embedded into the continuum spectrum (BSEC) 
[10 ,13)0 In this case an infinite number of these LlV(x)-bricks are naturally 
neededo 

The same rules are applicable for variation of para.meters of resona.nce 
( quasibound or decaying) stateso 

The qualitative theory of spectral control for wa.ves on lattices ( discrete 
quantum mechanics) and in periodic potentialswas considered by us in [1,2)0 
In particular, there were investigated : spectral inversion, upside down barriers 
and wells, minimal nonlocal corrections to discrete soliton-like potentials to 
make them reflectionless, allowed and forbidden spectral zone managementso 
This theory can be useful for understanding the features of interchannel mo­
tion ( over the discrete variable numbering mixed configurations) 0 

Algorithms of spectrallacuna creation (tearing off or splitting continuous 
spectra at a relevant energy) were elaborated in [1, 2) 0 

3 Spectral Management and Multichannel Peculiarities 

The system of coupled Schrödinger equations has the form: 
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Fig. 2a. 

V 

Fig. 2b. 

X 

Fig. 2. Gathering at the origin of the ground state wave function by increasing the 
spectral weight Cground = 1/J~round(O) in the initial infinite reetangular weil: a) wave 
functions, b) the potential. See the two-channel analogue of this phenomenon in 
Fig.3 

(1) 

where the channel waves 1/Jj ( x) are the components of a wave vector, E; = 
E- f; with the threshold energies f;. 

Figure 3 exhibits the genuine multichannel phenomenon when by increas­
ing only one ith component of the spectral weight vector (SWV) C>-.,i = 
y~;;(o, E>..) all other channel wave functions 1/Ju.;(x, E>..) are partially trans­
ferred to the ith channel. The exact formulae that we have used here and in 
what follows have been given in (14]. It is a result of the channel connection 
(" as in communicating vessels"). So, the waves are gathering not only in the 
configurational, but also in the channel spaces. In the limit lc>..,i I --+ oo all 
components are completely sucked out by the chosen ith channel where they 
are pressed to the origin. 

In the one-channel case in the limit C>.. --+ 0 the corresponding bound state 
1/J >.. ( x) is pressed into the opposite ( outer) potential wall. lf 1/J~ ( a) --+ 0 on the 
right boundary x = a, then 1/J>..(x) is pressed into the outer potential wall. 
Unlike this, in the multichannel case the vanishing of partial lc>..,il does not 
lead to pressing of the corresponding wave into the opposite wall. The wave 
is only partly shifted to the opposite wall and partly transferred (squeezed 
out) into the other channels. This is shown in Fig.4 

In the process of variation of the spectral weight vector (SWV)-compon­
ents there can ( dis )appear knots in cantrast with the one-channel case. This 
can be seen in Figs.3 a.nd 5. 
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Fig. 3. Transformation of the components of the two-channel ground bound state 

wave function m the initial infinite reetangular weil 
0 0 0 

(Vn (x) =Vn (x) = 0; v!2 (x) = -0.3; (o :S X :S JI] by a strong increasing of 

the derivative of the second component 1/JA=1,2(0) at the origin x = 0. As in the 

one-channel case, the wave 1/JA=!,2(x) is gathered to the origin, but also the first 

one 1/JA=l,I ( x) is partly transferred into the first channel. There appears a knot in 

1/JA=l,l(x) (see also Fig.5) 

bl' bl',!., ......... . 
·._ Flg.4 . 

..... 
. 

X 

Fig. 4. Transformation of the components of the two-channel ground bound 

state wave function m the initial reetangular weil of infinite depth 
0 0 0 

(Vn (x) =Vn (x) = 0; v!2 (x) = -0.3; (0 :S X :S Pi] by making zero the derivative 

of the first component 1,&[( a) on the right boundary x = a. In cantrast with the 

one-channel case, the wave is not only slightly pressed to the opposite wall but also 

is partially transferred into the second channel 

In the one-channel case we have found [4] the effective annihilation of 

two states when they approach one another (in the Iimit of degeneration 

of the Ievels). U nlike this, there is the allowed degeneration of M linearly 

independent bound states for M channels. By analogy with the one-channel 

case [4] there is the phenomenon of annihilation of degenerating bound multi­

channel states with linearly dependent spectral weight vectors. 

Fig.5. The appearance of a knot in the second component 1/JA=l,2(x) of 

the ground state ( >. = 1) wave function when the derivative of the sec­

ond component 1/J~,2 (x) at the origin changes sign (from negative to posi­

tive). The initial interaction matrix elements are infinite reetangular wells with 
0 

V12 (x) = -0.3, Vi1(x) = \122 = 0.3, (0 :S x :S Pi]. See also Fig.3 
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As an example, we here consider the two-ehannel system with the reetan­
gular interaction matrix of finite depth with Vn = v22 = const [0 :::; X :::; a] 
and aehieve the degeneration of bound states by deereasing the ehannel eou­
pling v12 ---+ 0. We have ehosen equal swv C)..;1,2 for two lowest states. In 
the proeess of approaehing the Ievels, their bound state wave functions are 
divided into two parts one of whieh is going to infinity when v12 ~ 0. 

Rudiments of annihilation phenomena ean be seen (Fig.6.) if we gradually 
ehange the SWV of the ith state whose energy is near some other ( i± 1 )th Ievel 
approaehing C>..,i ---+ C>..,i±l without shifting energy Ievels themselves. Similar 
states began to "break" in two pieees one of whieh has the trend to move away 
(the further the closer together are the Ievels). At the "erossing" point of C>..,i 

with C>..,i±l there oeeurs the "flip" (ehange of sign) of the repulsed (right) 
parts of the wave funetion eomponents. The left bumps of the eomponents 
do not ehange so mueh being fixed by given values of their derivatives (SWV) 
at the origin. So, Fig.6 also demonstrates the ineompatibility of degeneration 
of states with the same SWV. 

Fig. 6. The effect of "intolerance" of states which are close to each other in spectral 
parameters (energy levels E1 ~ Ez and similar SWV). The components of one func­
tion ( of the two-channel ground bound state) are shown for the finite reetangular 
weH interaction matrix. Pay attention to preparation of the effective annihilation of 
the "extra" state: the wave bumps on the right are teared off the original standing 
wave and pushed to the right (in the limit of degenera.tion and equal SWV these 
bumps are shifted to infinite x) 

Consider a simple model of degeneration of three two-ehannel states whieh 
ean be explained by one-ehannel analogies. The initial system eonsists of two 
uncoupled ehannels with infinite reetangular potential wells with different 
heights of their bottoms V11 = 0, V22 = 3. Linear eombinations of the seeond 
state in the first well and the lowest state in the seeond well give two degener­
ated states with the energy Ievels E 2,3 = 4 and orthogonal SWV. The initial 
ground state with E 1 = 1 and C>..=l, 2 = 0 eonsists of the one-ehannel ground 
state in a deeper weil and zero seeond eomponent. The approximate triple 
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degeneration is produced by approaching E 1 to E 2 ,3 = 4 with fixed SWV 
and C>..=1,2 = 0 so that the second component of the ground state remains 
zero and the channels remain uncoupled. All changes occur in one well V11 

(in one channel as in [4]). The eigenfunction components in the first channel 
are teared into two pieces one of w hich ( the right) is pressed to the right 
potential wall as in the ordinary one-channel case (preparation to effective 
annihilation). The left bumps are stabilized by fixed SWV values. Let us now 
increase C>..=1,2 from its initial zero value to 1. This requires the wave transfer 
between channels. So, V12(x) appears to suck out some wave from the first 
channel as is shown in Fig.7. It has a big right side at the place of the right 
wave bump prepared for annihilation in the first channel. The shape of V22 ( x) 
provides the shift of the received wave to the left to make C>..= 1,2 = 1. The 
interaction matrix element V11 (X) has a barrier and a well which have pressed 
part of 1/J>..=1,1(x) to the right wall. 

a. h, 

V" 

v" "· 

Fig. 7. 

Fig. 7. Two-channel wave function components of the ground state (a), and inter­
action matrix elements (b, c, d) by approximate triple degeneration of three lower 
states. The initial system has uncoupled infinite reetangular potential wells with 

0 0 0 

different heights of their bottoms V 12 =V11 = 0, V 22 = 3 and exactly degenerated 
0 

second and third states. In the initial ground state SWV C>.=1,2= 0. The initial 
system is transformed by lifting the ground state level up to neighboring exited 

states: E1 ---> 3.9, and making C>.=1,2 = C>.=l,l = 

It is well known that in the one-channel case the absolutely transparent 
potential is a soliton-like well and necessarily has one or more bound states. 
What could be expected when we transit from the one- to multi-cha.nnel ca.se 
for transparent systems? It could seem that to the single-channel soliton-like 
potential there should correspond the interaction matrix with the soliton-like 
elements. Really, it is so in the case with identical thresholds in all channels. 
But in the genera.l ca.se there appear unexpected barriers in the interaction 
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matrix which are necessary for the reflectionless motion of waves [2]. Recently, 
we have obtained new classes of absolutely transparent multi-channel systems 
through the multi-channel generalization of SUSY transformation. Among 
them there are interaction matrices without bound states, which is impossible 
for one-channel systems (except the trivial case offree motion). 

In Fig.8a an example of the two-channel interaction matrix reflectionless 
at any energy is shown without creation of a bound state. This resembles 
the picture of the absolutely transparent potential matrix bearing one bound 
state (Fig.8b) derived for the first time by the inverse problern technique 
in [5] . The difference is that in Fig.8a there is no potential weil in the first 
channel, which results in the absence of a bound state. The SUSY-derived 
potential matrix without bound state depends on parameters E,m 1 ,m2 at­
tributed to creation of the nonphysical state with the prescribed increasing 
asymptotic behavior. 

l 

Fig. 8. Interaction matrix for a two-channel absolutely transparent system with 
different thresholds of channels: a) without and b) with creation of a bound state 

A standard situation is when for the short-range interaction matrix V;j ( x), 
different channels become disconnected at !arge distances and solutions there 
are combinations of the corresponding free waves. But even the weak cou­
pling V;j ( x) can suck out remaining waves from some open channels into 
other ones violating the standard asymptotic picture. For example, there can 
be an exponential decreasing function in the open channel. This happens 
for the multi-channel transparent interaction matrix when the wave incom­
ing in one "a" -channel is distributed at first between other channels in the 
interaction region but then is concentrated again in the "a" -channel. This 
unnatural asymptotic disappearance of the wave in the open channel (which 
is unexpected because the motion there is not explicitly forbidden ) due to 
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the coupling of channels even for rapidly decreasing .1 v;j ( x) is remarkable 
multichannel feature. 

One of the wonderful possibilities of IP and SUSY transformations is 
the creation of bound states embedded into continuum (BSEC), see [1,7,13] 
and references therein. The corresponding standard one-channel potentials 
and BSEC wave functions have long-range oscillating tails ( decreasing with 
ras"' 1/r). Examples of short-range multichannel interaction matrices with 
BSEC below some threshold energies were considered in [7, 15]. 

Now we have understood that it is of crucial importance for the con­
struction of multichannel BSEC whether the spectral weight vector of the 
initial system without BSEC at the energy of creation of BSEC is changed 
by a scalar factor or different components of the vector weight are changed 
non-proportionally. 

If the creation of BSEC does not violate the ratio of spectral vector com­
ponents, then the transformation caused by the scalar factor in SWV does 
not hinder the cancellation of increasing waves in linear combination of regu­
lar solutions in closed channels under the integral in the denominator of the 
created state 

(2) 

0 

where Paß ( x, E) is matrix of the regular solutions of Schrödinger equations 
0 

with initial V aß ( x) and obeying initial conditions 

0 d 0 

Paß (0, E) = 0, dx Paß (x = 0, E) =Daß; <t < E < <2. 

The denominator grows not faster than linearly with x. An example of 
such multichannel BSEC systems is shown in Fig.9. In the general case there 
appears an exponential suppression of BSEC wave functions and the interac­
tion matrix. 

We can predict that multi-BSECs will have properties analogaus to the 
one-channel case of approximately linearly dependent and almost degenerated 
states and transformations caused by changing the spectral weight vector of 
one state by a scalar factor. But there are additional degrees of freedom of 
the independent variation of separate SWV-components. 

Wehave considered the degeneration of one-channel BSEC states [18] and 
have. 

In general, for M-channel equations it is possible to degenerate M BSEC 
with independent SWV and we expect annihilation of BSEC with linearly 
dependent SWV. 

The system of coupled Schrödinger equations ( 1) can be considered as 
one equation for the function 7/Ji ( x) of two variables: the continuous space Co­
ordinate "x" and discrete index "i" numbering the channels. The algorithms 
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Fig. 9. Two-channel interaction matrix Vi1 ( x) and components of wave function 
tJr1•II(EBsEc,x) for abound state embedded into continuum spectrum (BSEC) 
between channel thresholds. This is a special case of the creation of BSEC by 
transformation of the SWV of the initial system by a scalar factor. Pay attention 
to the slowly decreasing potential and eigenfunction asymptotic tails in the open 

0 

channel (Vi 1 ( x ), !Jr1 ( x )). The initial square well interaction matrix V 11 is also shown 

of qualitative spectral, scattering and decay control for one-dimensional one­
channel systems were elaborated by us separately for continuous and discrete 
variables [1,2]. The spectral management of (1) can be considered as a com­
bination of these algorithms. In particular, in the simple two-channel case 
V11 (x) = V22 (x); V12 = const when the system (1) can be separated in two 
uncoupled equations for 7fl±(x) = 7f};(x) ± 7f};(x), we have found that the 
spectrum of (1) consists of multiplets of Ievels whose average positions are 
controlled exactly by the rules for continuous variable "x" and the position 
of Ievels inside the multiplets relative to their center can be managed by 
prescriptions of the discrete quantum mechanics [1 ,2]. 



40 Chabanov V.M., Zakhariev B.N. 

The theory of qualitative quantum design [1-4] was based on freedom of 
considering not only real objects but all possibilities of the construction of 
quantum systems by arbitrary variation of independent spectral and scatter­
ing parameters. In the multi-dimensional case there appear additional con­
straints on the initial data of IP to except the extra variables in comparison 
with the number of variables in the potential. This excludes also the possi­
bility of existence of exactly solvable models [1]. But including the potentials 
being nonlocal in part of variables allows us to get an equal number of vari­
ables in potential and spectral (scattering) data. In this case we again, as in 
one-dimensional space, obtain complete sets of exactly solvable models with 
independent spectral parameters. In principle, our investigations of multi­
channel quantum design is just the consideration of a convenient represen­
tation of such systems with nonlocal interactions (finite interaction matrices 
correspond in general to nonlocal potentials [1]). 

Local potentials are a particular subset of nonlocal ones. So, we can ap­
proximate local systems by nonlocal models. 

The unified theory of reactions suggested by Feshbach was generalized to 
arbitrary rearrangements of particles [16] and later this new formalism was 
used for a principal solution of the three- (and more) body inverse problern 
[19]. 

The multi-channel coupled equations can be treated as equations in dis­
crete (numbering channels) and continuous (x) variables. The nondiagonal 
elements of interaction matrix \lij ( x) represent the nonlocal interchannel cou­
pling. Algorithms of spectral control are combinations of the corresponding 
rules separately for the wave management on lattices and in ordinary spaces. 

Here it is very interesting to consider finite-difference Schrödinger equa­
tions of an order higher than 2 [1 ,2] ( with multidiagonal Hamiltonians). There 
appears the phenomenon of spectrum folding and problems of control the 
number, positions and widths of the branches of spectra. It is worth men­
tioning that the potential nonlocality in discrete quantum mechanics has 
much in common with the effect of the corresponding difference operators 
and this makes discrete models a very convenient tool to elaborate quantum 
intuition concerning the nonlocality and interchannel coupling. 

An analog of the two-spectrum theorem for the one-channel case is the 
M + 1 spectrum multichannel theorem [1 ,2]. It would be interesting to consider 
the possibility to generalize these theorems to the wave motion on the half 
or the whole axis x including nonphysical (not L2) eigenfunctions. 

The inverse scattering problern for coupled channels with the modified 
Newton-Sahatier method (E=const approach) was considered at this Confer­
ence [17]. 

SUSY gives often new results in comparison with IP. Below weshall give 
the main formulae of exact multichannel models in the SUSY approach. They 
may be useful because we have not seen them in such a clear form. 
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4 Multichannel SUSY 

In this approach the hamiltonian in Eqo(l) on the whole axis is represented 
in a factorized form 

(3) 

where f is the so-called factorization energyo The operator A- has the form 

' d A 

A- = -- + W(x), 
dx 

(4) 

where W(x) is a matrix to be foundo The operator Ji+ is the hermitian 
conjugate of A- 0 

For definiteness, consider the case of two channels onlyo Furthermore, let 
the initial potential matrix V;j ( x) be identically equal to zero on the whole 
axiso Let ~( x) be a matrix solution of the Schrödinger equation at the energy 
f (fL~(x) = c~(x))o In particular, we can take 

(5) 

'"i = ~0 We can easily obtain W(x) from the equation 

(6) 

arising from the definition of ~( x) 0 So, we have 

W(x) = ~~ (x )~(x )- 1
0 (7) 

Using (5) we rewrite this expression 

For W(x) tobe hermitian, one should put c2 = -ctm1Kl/K2m20 Then (c1 is 
canceled in the numerator and denominator): 

W(x) = 

( 

Kl[m~K2e(~<1-~<2)x_mft>1 e(~<2-1<1)x] 
mf ~'>1 e< ~<2 ~<1 )x +rn~ ,..2 e< ~<1 ~<2 )x 

_ 2K1rn1K2m2 
mi~<1eC~<2-~<1)x+m~K2 eC~<1-~<2)x 
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The SUSY transformation itself is the permutation of operators A- and 
.A+ in (14). So, we get the transformed hamiltonian (supersymmetrical part­
ner of fL) 

fi+ = .A- A_+ + f = fi_- 2W'(x). (10) 

It is easy to see that vector-column solutions of the Schrödinger equation 
with fi + have the form 

(11) 

Furthermore, it can be shown that these solutions have the same asymptotic 
behavior as the unperturbed ones, in other words, SUSY transforma.tion does 
not change characteristics of the continuous spectrum (the reflection matrix 
remains unchanged and equals to zero identically). Unlike the one-channel 
case, the expression P(x)- 1 is not asolution at energy c Nevertheless, we can 
obtain four linearly independent vector-column solutions via formula (11), i. 
e. by the action of A- on four linearly independent solutions for the initial 
hamiltonian fi_ at E = c It appears that the choice ofP(x) (5) corresponds 
to the case when the construction of a linear combination of the vector­
column solutions with exponentially decreasing asymptotic is impossible. So 
we see that the bound state at energy f is not crea.ted. We have a nontrivial 
potential transformation without affecting spectral characteristics. Of course, 
the choice of matrix solution (5) is not unique. This matrix may be composed 
of any two linearly independent vector-column solutions corresponding to the 
initial hamiltonian fi _. 

5 Conclusion 

Hilbert once said that physics is too difficult for physicists. Maybe, Gell-Mann 
and Einstein expressed the same idea when they called quantum mechanics 
the "anti-intuitive discipline" and "bewitching ca.lculus". But besides this 
there is a strong tendency of science simplification. There was a permanent 
remarkable growth in old good quantum physics from the very beginning. 
And one of the main points of the growth was the IP and SUSY theory. 
The exact models, some of which we have considered here, bridge direct 
and inverse problems, which will give us in future the renewed and unified 
quantum mechanics. The qualitative theory of Dubna school of the inverse 
problern is our contribution to enriching the algorithms of quantum intuition 
[1,2,7]. 

Quantum physics has already clone very much for the progress ofmankind. 
We expect from it much more in the future (the radical solution of energy 
problems, fantastic achievements in quantum electronics and due to them per­
fect technologies etc.). Now everybody knows the importance tosavenatural 
environment, but much more care is to be paid to our spiritual (informa­
tional) environment. 
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There are about 5109 people on the Earth now. This means that there are 
about five million tons of brain matter. This is the most valuable thing (in­
comparable with oil, gold, etc. for which people so often involve one another 
in wars). But we treat this treasure nonrationally. Only a negligible part of 
this matter has satisfactory access to information which can tremendously 
increase creative power of the Earth population (millions of virtual Newtons, 
Lobachevskiis, Chaikovskiis ... ). 

Of course, every kilogram of the brain matter is egoistic, this is natural 
as well as the fact that we always retard relative to our contemporary possi­
bilities. But egoism can be primitive (short-range) or clever (long-range). In 
the limit of global radius, egoism coincides with altruism that is really the 
mostprofitable strategy for everybody. Through possibilities of computer net 
connections of every person with another the mankind can sooner and deeper 
learn this truth. With memory elements of molecular size one quantum com­
puter diskette can contain all what was written by people during the whole 
worlds history. This means that our quantum business helps us to make life 
on our Planet more spiritually comfortable, clever life. 
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Ambiguities in Inversion Potentials 
for Light N uclear Ion Scattering 

K. Amos and M. T. Bennett 

School of Physics, University of Melbourne, Parkville, Victoria 3052 Australia. 

1 Introduction 

Understanding the nature and specifics of the potential energy of interaction 
between two colliding quantum systems, be they of nuclear, of atomic or of 
molecular type, is central in almost all studies of their possible reactions. 
Conventionally, elastic scattering data is used as a measure to assess the pro­
priety or no of any candidate form one may specify for such (non-relativistic) 
interaction. Invariably also one considers that interaction to have local form 
which however may be complex and/or energy dependent. 

There are two basic approaches by which quantitative information on the 
( effective, local) interaction between colliding quantal systems may be sought 
from measured, elastic scattering data. The first is the direct approach in 
which either a form for the interaction is assumed or its radial va.riation is 
determined by folding underlying component interactions with the density 
proflies of the colliding systems. The result is then used in the Schrödinger 
equations to specify the relative motion wave functions for the system. From 
those solutions, phase shifts are extracted a.nd thence, by standard sum­
mations of Legendre polynomials, observables such as the differential cross 
sections are predicted. Frequently the procedure is modified to a numerical 
inverse method by adjusting values of parameters in the chosen form seeking 
a result that 'best fits' measured data [1]. 

Alternatively one can use global inverse scattering theories [1] with one of 
many methods of solution to determine candidate interactions from S func­
tions (phase shifts) that have been determined by a ( quality) fit to measured 
data. In so doing, there is essentially no a priori assumption made a.bout the 
shape of the 'inversion' potentials. However, they are clearly linked to the 
chosen method of implementation, i.e. as one uses the Lipperheide-Fiedeldey, 
Newton-Sabatier, Marchenko or Gel'fand-Levitan equation to name a com­
mon set. 

With either approach, central in the procedure is the scattering function, 
which for energy E( = 1i2 k2 /2p) is given in terms of the phase shifts by 

(1) 

when the angular momentum variable ( A) are the real values l + ~, as such 
gives the link 
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{ :~} {:> S(>., k) {:> V(r, E) (2) 

Therein there are two possible spectral parameters, the energy and the angu­
lar momentum. But almost all studies, direct and inverse, have fixed one or 
the other. With inversion methods the fixed ,\-variable energy approaches 
have led to new insights about the two nucleon interaction. But most experi­
mental results suggest use of fixed E - variable angular momentum schemes. 
Typical data are differential cross sections measured at a single energy and 
for a set ( often incomplete) of center of mass scattering angles. Such fixed 
energy data and their analyses are the subjects of this article, with particular 
emphasis placed upon the problems of the links between data and the inver­
sion interactions via the S functions. The key problern in assessing a quantal 
scattering interaction is the definition of the physical S function. There are 
problems with the link between that physical S function and the interaction 
whether a direct or an inverse process is used. But it is worth noting that 
once the S function in the form suitable for use with an inversion method 
has been chosen, then the resulting potential is unique (to within any phase 
equivalent condition such as yield the so called 'transparent' additions or 
super-symmetric partners). With inversion schemes, the process of choosing 
the S function for a continuum of angular momentum values is ambiguous 
however. But equivalent ambiguities are present with analyses using direct 
methods in so far as the parametric specification is always ambiguous. Worse 
the direct process locks one into an a priori choice ofform for the interaction; 
a choice that often has limited physical justification. 

2 The process ;~ => S(.X) 

Consider the differential cross section of elastic scattering which, with () being 
the scattering angle (k; · k 1), is defined in terms of a complex, scattering 
amplitude by 

(3) 

That scattering amplitude will be taken as 

(4) 

andin a partial wave expansion (with St = St(k) = e2i 8t(k)) 

f(B) = LJI PI(B) = 2:(2Ji + 1)2~k [St- 1) Pt(B) ' (5) 
i i 

whereby, if one can specify the phase cp(B), and have the cross section at all 
scattering angles, then the S function at the physical values (Ji) ofthe angular 
momentum variable>.(= Ji + ~) are 
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SL = 1 + ik 11r f(B)P~.(B) sin(B)dB. (6) 

This process seems of little value - indeed it is of none if the phase cannot be 
specified. We consider such questions further in another contribution to this 
issue wherein the constraint of unitarity is used to specify a nonlinear equa­
tion for that phase function and a method of solution specified and applied 
to both nuclear and atomic scattering data. But there are also uncertainties 
with any process of defining St due to problems with the data sets, some of 
which are 

(i) (large) statistical errors 
(ii) systematic errors (both known and unknown), and 

(iii) incomplete data requiring interpolation and extrapolation for B = 0° to 
180° . 

Of these, treatment of the systematic errors of data sets has been found to 
be particularly important in establishing what is and is not a statistical fit 
to that data set [2]. These matters are considered in brief in the next section. 
In addition there are ambiguities in the construction of the fixed energy S 
functions ( or equivalently the phase shifts), some of which are 

(i) layered ambiguities (8t-+ 8t + mr) 
(ii) window ambiguities (limited data sets) 

(iii) unknown bound state influences in S(A), and 
(iv) phase symmetry condition (lf'-+ 27r -1p) 

Such problems, and those created by loss of unitarity of the S function due 
to flux loss to other reaction channels, mean that functional forms for S(A) 
are taken usually. Therewith one also has the ambiguity of construction that 
is the prime consideration of this paper. The choice of S function form then 
is based upon its utility in effecting the inversion process. S functions having 
rational function form, viz. 

(7) 

where "1 is the Sommerfeldparameter, are particularly useful and are required 
for use with both the semi-classical WKB and fully quantal Lipperheide­
Fiedeldey inversion schemes that have been of primary interest to us with 
analyses of electron-molecule, atom-atom and nuclear scattering cross sec­
tions [2]. 
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3 Treatment of errors in data 

The quality ( and extent) of data is crucial in the determination of an S 
function. Such is reflected by the size of the statistical uncertainties with the 
quoted experimental values, by unknown systematic errors of any experiment 
and by known systematic errors such as the exact angle and acceptance of 
detectors. There is nothing a theorist can do about the count rates and the 
attendant statistical error but there are various techniques one may consider 
to estimate the effects of the systematic errors in defining S functions [2]. 

Smoothing splines provide 'nice' curves by which discrete noisy data 
can be smoothed and a particularly suitable process for smoothing cross­
section data is that of generalized cross validation ( GCV) [3]. Allowing that 
a measured N point data set consists of a smooth physical result plus white 
noise, the GCV process is a trade off between fidelity to the quoted data set 
( chisquare per data point, x2 IN) and roughness of a selected (2m -1) degree 
smoothing polynomial spline. That roughness is measured by the integrated 
square of the mth derivative of the smoothing spline function. The end re­
sult is a new table of data ( at the same scattering angles) whose differences 
from the original values one might consider to be an estimate of unknown 
systematic errors. 

Even so, that does not guarantee that a new 'data set' will result against 
which an S function can be found to produce a fit of statistical significance; 
i.e. one for which the measure, chisquare per degree of freedom (x2 I F; F = 
M - N) of the fit with N adjustable parameters and M data points, is of 
order 1. 

In finding high quality fits to extensive cross-section data sets, one must 
consider also the known systematic errors and for differential cross sections 
that is usually an uncertainty with the angles at which the detector has 
been placed. We have taken such into account in a very simple manner. 
Specifically we have allowed each quoted experimental value to correspond to 
an angle in the range araund the tabulated number. For heavy ion scattering, 
typically that angle uncertainty is 0.1°. In a case studies recently, by 'angle 
shaking' each and every quoted experimental result, a relatively poor fit to 
the quoted cross section from 12C-12C scattering at 250 MeV actually became 
a statistically significant one to the 'angle shaken' values [2]. 

4 The nuclear isospin potential 

That the interactions between nuclei are isospin dependent has been known 
recognized since the symmetry energy term in the Bethe-Weissäcker semi­
empirical mass formula was established. Such a potential may be expressed 
by 

V(r) = Vo(r) + Viso(r )[-rp · Tt] , 



Ambiguities in Inversion Potentials for Light Nuclear Ion Scattering 49 

wherein T; are the isospin operators for the projectile (p) and target (t) 
respectively. Analyses of scattering data from isobaric systems enable us to 
estimate both V0 and Viso· Herein we report on such analyses of the cross­
section data of Dem'yanova et al. [4] and for the systems 3 He from 14C at 72 
MeV and 14C from 3 H at the matehing energy of 334.4 MeV. With potentials, 
VH/He( r) determined from fits to the separate differential cross sections, the 
central and isospin components follow from 

1 
1/H/He(r) = aVo(r) ± 2Viso(r) . 

We have analysed these cross section data using both the global inverse 
method of Lipperheide-Fiedeldey (hereafter abbreviated as LF) and the nu­
merical inverse method of a conventional optical model ( 0 M) approach. In 
the LF approach, first we must ascertain S functions of the form, 

from fits to the data. The reference S function we took as 

where TJ is the Sommerfeld parameter. Thus, with N complex polelzero pairs, 
Ac defines a ( 4N + 1) parameter set for the S function. Both the 118 data 
points from the 14C-3 H reaction and the 56 data points from the 3 He-14C 
case were fit by using 21 parameter S functions giving, after the application 
of both the GCV smoothing and 'angle shaking', fits to the measure of 8.87 
and 1.31 for x2 I F respectively. The quoted experimental uncertainties were 
used in these analyses (not the typical 10% values usually considered in most 
studies) and an angle uncertainty of 0.1° was assumed for each datum as those 
were not quoted in the published results [4]. Of the 'smoothing techniques' 
used with our analyses, angle shaking had the most dramatic effect. But it 
did not suffice to bring the analysis of the data from the radioactive beam 
experiment ( the 14C-3 H scattering) to have a statistically significance, i.e. 
to have x2 I F ~ 1. But we note that one or two points give most of the 
contribution to the total value of x2 and if one may ignore them, then the 
result is very good. That is evident from the cross sections shown in Fig. 1. 
Therein the dashed curves give the best fits we have obtained to the GCV 
and angle shifted data using numerical inversion. The conventional complex 
OM potentials were used in those studies. With Woods-Saxon (WS) forms 
for the central real and imaginary attributes and a derivative WS form for a 
surface absorption term, the 10 parameter models gave fits that had values 
of 22.8 and 13.7 for x2 IF. Note those values reduce to 3.41 and 1.94 if we 
allow 10% errors, as is often used in analyses instead of quoted experimental 
uncertainties. 
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The inversion potentials, in central and isospin form, are given in Fig. 2. 
The results obtained with the two approaches are quite different. The LF 
method has led to relatively weak refractive and even weaker absorptive in­
teractions for both elements. The OM results, in contrast, give a weakly 
absorptive but strongly refractive central interaction and a repulsive, essen­
tially real isospin component. But the quality of fit with the two approaches 
are not sufficiently similar, with only the LF method resulting in a fit of 
reasonably small error measure. 
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Fig. 1. The differential cross sections from the scattering of 334 MeV 14 C ions 
from 3 H (top) and from 72 MeV 3 He ions from 14 C (bottom) compared with fits 
by using the LF inversion potentials obtained from the rational S function forms 
(solid curves) and with those from optical model calculations ( dashed ctuves). 

The situation is different however with our analyses of some new data 
from the scattering of 7 Li ions. They are presentecl next. 
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Fig. 2. The central and isospin potentials obtained from the LF inversion studies 
(bottom) compared with those obtained from the optical model analyses (top). 

5 The LF-OM ambiguity- 350 MeV 7Li-12C and 
7Li-28Si Scattering 

In a recent publication [5], N adasen et al. present high quality data from the 
elastic scattering of 350 MeV 7 Li ions off of 12C and 28Si to complement 
those they had measured previously at lower energies. They have analysed 
their data by numerical inversion with the standard OM approach finding 
what they term 'unique' OM potentials. The terminology is unfortunate even 
within the subdass of interactions of the OM approach. More to the point 
though, their high quality (1 2C) data can be fit with both the LF global and 
OM numerical inversion methods and with comparable good fit measures. 
With the LF procedure, we have found excellent fits to the 350 MeV data by 
using 5 and 9 polelzero pairs for the 12C and 28Si cases respectively. Likewise 
an excellent fit to the 12C data has been found with the OM approach. 

The cross section from the scattering of 350 MeV 7Li ions off of 12C is 
shown in Fig. 3. wherein the data are compared with the result (solid curve) 
of using the LF inversion potential to solve the Schrödinger equations for 
the scattering. The fit is excellent having a total x2 value of 50.1 and is 
therefore statistically significant as x2 I F is 0.98. A similar, very good, LF 
inversion result has been obtained with the 7Li-28Si data (x2 I F = 1.01). 
But only with the 12C data have we been able to find such a quality fit by 
numerical inversion. With a 7 parameter model consisting of a central real 
and imaginary WS form plus a Coulomb radius, the 12C data has been fit 
with an end value of x2 of 69.4 and so x2 I F of 1.07. For the 28Si scattering, 
our best OM result has x2 I F = 7.17. 

The S functions with which we find the best fits to the 350 MeV scattering 
data, are presented in Fig. 4. Therein, the phase has been plotted modulo 1r, 
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Fig. 3. The differential cross section from the scattering of 350 MeV 7 Li ions off 
of 12 C compared to the result calculated from the LF inversion potential. On this 
scale the OM result is indistinguishable. 

7Li + "c 7Li +"Si 

0.8 
0.6 
0.4 
0.2 
0.0 

1.0 

0.0 

1.0 

50 100 0 50 100 150 

'A 

Fig.4. The S functions for 350 MeV 7 Li on 12 C and 28 Si. The LF and OM results 
are displayed by the solid and dashed curves respectively and the phases are plotted 
modulo 1r. 

hence the vertical segments shown. The solid curves portray the LF results 
while the dashed curves are the OM ones. Clearly the rational forms of the 
S function from the 12 C fit is quite different to that from the OM study. 
The LF result is very structured with ISI being !arge, > 0.5 in fact, for all 
small partial waves. The LF and OM results from our analyses of the 28Si 
data, in contrast, are quite similar and tend to the strong absorption model 
form. The variations in the S functions reflect in striking differences between 
the inversion potentials as is evident in Fig. 5. The top row contains the LF 
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Fig. 5. The LF and OM potentials from the fits to the 7 Li scattering cross sections. 
The real and imaginary parts of the potentials are shown by the solid and dashed 
curves respectively. 

inversion potentials, ViNv(r), for each system, while the bottom row shows 
the OM results, VoM(1·). In each case, the solid curves portray the real parts 
of the potentials while the dashed curves give the imaginary parts. A standard 
notch test revealed that the minimum radius of sensitivity is approximately 
2 fm, hence the lower Iimit in the abscissa. 

The differences between the LF and OM results are quite evident, and 
especially so for the 12 C scattering. But it is to be recalled that both in­
teractions, when used in solving the scattering Schrödinger equations gave 
statistically significant fits to the data. Clearly some a priori bias has to be 
used to ascertain which is the most 'physical'. 
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Abstract. The one-dimensional coupled-channel Marchenko equation in the pres­
ence of thresholds is derived. Various aspects of this equation are discussed and a 
numerical algorithm for its solution is proposed. The efficiency of the algorithm is 
demonstrated using simulated scattering data. 

1 lntroduction 

Theinverse scattering problern on the line (i. e. in one dimension) has been 
formulated long ago (see, for example, Chadan and Sabatier (Hl82) and 
Calogero and Degasperis (1982)). Although its formal solution has become 
textbook knowledge, it is only recently that generally applicable ancl reliable 
numerical methods for solving it have been developed (Corvi (1992), Sacks 
(1993), Lipperheide et al. (1995a), Lipperheide et al. (1995b)). This may be 
attributed to the lack, so far, of a sufficiently complete set of scattering data 
to be used as input. In particular, the 'phase problem', i.e. the absence of 
information on the reflection phase, which is neecled in adclition to the re­
flectivity, has preventecl the practical application of one-dimensional inverse 
scattering formalism, so that there was no urgency in cleveloping viable nu­
merical methods. Thus, the few one-dimensional inversions performed up to 
now in applications were concerned with model problems (Lipperheide et al. 
( 1996) ), or used parametrizations of the complex reflection coefficient which 
were fitted to the data ('phaseless inversion') (Pechenick ancl Cohen 1981, Jor­
dan and Ladouceur 1987, Jordan and Lakshmanasamy 1989). However, in 
recent years the phase problern has received an increased attention, and var­
ious methods for obtaining empirical phase information have been proposed 
(Sivia et al. (1991), Fiedeldey et al. (1992), Gudkov et al. (1993), Majkrzak 
and Berk (1995), de Haan et al. (1995)). 

In comparison with the single-channel inverse problern on the line, the cor­
responding coupled-, i.e. multiple-channel case has received less attention. Its 
radial counterpart in three-dimensional scattering has already been treated 
by Newton and Jost (1955), Agranovich and Marchenko (1963) and, more 
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recently, by Zakhariev and Suz'ko (1990, Chapter 5), and by Kohlhoff and 
von Geramb (1993). The one-dimensional case on the line, in which we are 
interested here, was considered by Wadati and Kamijo (1974) and Calogero 
and Degasperos (1977). In that work the threshold energies are assumed to 
be the same in all channels and set equal to zero. In such a case, the coupled­
channel problern reduces to a Straightforward matrix generalization of the 
single-channel inverse problern treated by Marchenko. When, however, ac­
count is taken of the existence of different thresholds, the problern becomes 
considerably more complicated. This is due to the fact that the reflection 
coefficient as a function of the incident momentum must be defined on a 
2N- 1-fold Riemann surface, where N is the number of channels (cf. the work 
of Weidenmüller (1964) for the s-wave case in three-dimensional scattering). 

The present work is devoted to the one-dimensional coupled-channel in­
verse problern in the presence of thresholds. The corresponding matrix form 
of the Marchenko equation is derived and discussed in Sec. 2. This equation 
is solved in Sec. 3 for a simulated two-channel example. Section 4 contains 
our conclusions. Some technical details of the algorithm used are given in the 
Appendix. 

2 The Marchenko Method for Coupled Channels 

2.1 The Jost Salutions 

The coupled-channel Schrödinger equation in one dimension has the form (in 
appropriate units) 

(1) 

where V is a real symmetric N x N potential matrix with matrix elements 
Vij, i, j = 1, · · · , N, E is a diagonal matrix containing the threshold ener­
gies f;, i = 1, · · · , N, lP is a matrix whose columns are formed by the N 
linear independent solution vectors of (1), and k is the incident momentum. 
We arrange the threshold energies f; in increasing order and set the lowest, 
the 'elastic' threshold energy, equal to zero, f 1 = 0. We restriet ourselves 
to potential matrices with finite support; this effectively includes potentials 
which vanish more rapidly than any exponential ( e.g. gaussian potentials). 
Moreover, we assume that the potential does not support bound states. 

If the potential matrix vanishes identically, V = 0, the solutions of (1) 
are the free solutions exp(±iKx ), where K is the diagonal matrix with 

(2) 

The matrix K is defined on the physical sheet of the Riemann surface for 
the momentum variable k. This sheet has an (N- 1)-fold brauch cut on the 
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real axis on the upper rim of which the diagonal elements of K are defined 
as follows, 

J' { 
Jk2- f· k?_Vfj, 

lkl < jfj, 
k <- 0' - V 'J' 

(3) 

for j = 2, · · ·, N and c1 = 0. 
In generalization of the single-channel case we introduce the pairs of Jost 

solutions F +(k, x), F +(k, x) and F _(k, x), F _(k, .r), which are solutions of 
( 1) with the asymptotic form 

lim exp(-iKx)F+(k,x)=l, 
x--++oo 

lim exp(+iKx)F+(k,x)=l, (4) 
x--++oo 

lim exp(+iKx)F _(k, x) = 1, lim exp(-iKx)F_(k,x) = 1. (5) 
X-+-CO X-+-00 

Each pair represents a fundamental system of solut.ion matrices. 

The matrix F _(k, x) goes over into the diagonal incoming-wave matrix 

exp( +iKx) for x -> -oo, that is, the Jost solution in the first column F _ has 
an incoming wave with current density k1 = k in the first channel and nonein 

t.he others, the one in the second column has an incoming wave wit.h current 

density k2 only in the second channel, and so on. The Jost solution matrix 

F _ ( k, x) therefore is the incoming component of the physical solution !P( k, x) 
for incidence from the left, to which we may add a.ny linear combination of 

the outgoing Jost solution matrix F _(k, x). On the other hand, in order to 
satisfy the physical boundary condition for x -> oo, the physical solution 

must consist only of Jost solutions F +(k, x). Therefore, we can write 

!P(k, x) = F +(k, x)T(k) = F _(k, x)R(k) + F _(k, x). (6) 

In view of the asymptotic conditions ( 4) and (5) the matrices R and T are 
recognized as the reflection and transmission matrices, respectively. A similar 
relation holds for incidence from the right. 

As in the single-channel case the Jost solutions have the Levin represen-

tations (Chadan and Sabatier 1982) 

F+(k,x)=exp(+iKx)+ 100 
G+(x,y)exp(+iKy)dy, (7) 

F+(k,x)=exp(-iKx)+ 100 
G+(x,y)exp(-iKy)dy, (8) 

F _(k, x) = exp(-iKx) + lxoo G_(x, y) exp( -iKy)dy, (9) 

F _ (k, x) = exp( +iKx) + ;:
00 

G_ (x, y) exp( +iKy)dy. (10) 

Inserting these expressions into ( 1) one obtains, after some algebraic manip­

ulations, the following differential equations for the kernels G± ( x, y): 
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( 
()2 ()2 ) 

ax 2 - ay2 G±(x, y) = V(x)G±(x, y) + [t:, G±(x, y)] : (11) 

here we have introduced the commutator [A, B] = AB- BA. The kernels 
satisfy the boundary conditions 

lim G±(x, y) = 0 
x,y--+±oo 

(12) 

and the potential matrix V(x) is related to either of the kernels G± via 

V(x) = +2 :x G_(x, x). (13) 

2.2 The Marchenko Inversion 

The inverse scattering problern consists in determining the potential matrix 
V(x) from the knowledge of the reflection matrix R(k) as a function of the 
incident momentum k. This is clone via the kernels G±(x, y), which are cal­
culated from the input reflection matrix R( k) with the help of the Marchenko 
matrix equation. The latter is obtained by inserting (12), (22) and (10) into 
(6), multiplying from the right by 

_!_ exp( -iKy/K ::::::: _!_ exp( -iKy)K- 1 k 
21r ak 21r 

and integrating over k. The left-hand side of (6) yields, writing T(k) 
1 + r(k), 

LHS(6) = o(x- y)l + C(x, y) + G+(x, y)H(y- x) + 1oo G+(x, z)C(z, y)dz, 

(14) 
where H(x) = 1, 0 (x ~ 0) is the Heaviside function and 

1 l+oo C(x,y) = 27r -oo exp(+iKx)F(k)exp(-iKy)K- 1 kdk. (15) 

For the right-hand side of (6) we have 

RHS(6) = o(x-y)l+B(x,y)+G-(x,y)H(x-y)+ j_~ G_(x,z)B(z,y)dz, 

(16) 
where 

B(x,y) = _!_1 00 exp(-iKx)R(k)exp(-iKy)K- 1 kdk. (17) 
27r -oo 

In the absence of bound states the matrix F(k) has no poles in the upper 
half-plane of k. If x > y the contour for the integral (15) can be closed there 
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and we, therefore, find C(x, y) = 0. Thus the expression (14) vanishes for 

x > y, and consequently the expression (16) yields 

B(x, y) + G_(x, y) + lxoo G_(x, z)B(z, y)dz = 0, X> y. (18) 

It is seen from the discussion above that, compared to the single-channel 

case ( as weil as to the no-threshold case), the new feature is the occurrence 

of the J ost solution matrices F + ( k, x) and F _ ( k, x), which are no Ionger 

equal to F + ( -k, x) ancl F _ (-k, x), respectively. This is a consequence of the 

N -fold connectivity of the k-plane in the presence of thresholds. The kerne! 

matrix B(x, y) now depends on the variables x ancl y separately, not just on 

the sum x + y, as in the former two cases. 
Since K 112RK- 112 = K- 112 RTK 112 by the principle of micro-reversi­

bility, we have RK- 1 = K- 1RT. It follows that the kerne! matrix B(x, y) 
has the symmetry property B(x, y) = BT(y, x). 

3 Numerical Solution of the Coupled-Channel 
Marchenko Equation 

For a numerical test of the coupled-channel inversion procedure outlined 

above, we reconstruct a potential matrix V from simulated data calculated 

from that potential. lnstead of solving the Schrödinger equation in the form 

( 1), we found it convenient to consider the corresponding Riccati equation for 

the logarithmic derivative Y(k, x) = 'P'(k, x)'P- 1 (k, x) = F~(k, x)F+ 1 (k, x), 

(19) 

This first-order differential equation is integrated from x = XR to x = XL, 

where XR and XL are the right and left boundaries, respectively, of the region 

where the potential is nonvanishing. From ( 4) the boundary conclition on 

Y(k,x) at x = XR is 
Y(k, XR) = iK 

and the reflection matrix R( k) can be expressed as 

R(k) = [iK + Y(k, rL)r 1 [iK- Y(k, rL)] . (20) 

With the reflection matrix R(k) given on a sufficiently fine equidistant 

grid of k-values up to a suitable kmax, the integral in (17) can be accurately 

evaluated. After discretization of the variable y, the integral equation (18) 
can be solved as a matrix equation. The derivative in (13) is obtained using 
a Chebyshev interpolation (for more details cf. the Appendix). 

As an example, we chose a potential matrix V ( ;r) constructed from gaus­

sians centered arouncl x = 2 ( cf. Fig. 1), 
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Fig.l. The matrix elements of the potential V(x) 

V( ) _ (l.Oexp[-5(x- 2)2] 0.5exp[-7(x- 2)2]) 
x - 0.5exp[-7(x-2)2] 2.0exp[-9(x-2)2] · (21) 

The threshold energy of the second channel was chosen as E2 = 0.25. We set 
XL = 0, XR = 4 and kmax = 10. The reflectivities lr11(k)j 2, lr22(k)l2 and 
(k2/k)jr21 (k)l2 corresponding to the reflection matrix R obtained for the 
potential (21) are shown in Fig. 2. The resulting kernel B(x, y) is shown in 
Fig. 3 as a function of the variables u = x + y and v = x- y. We see that the 
kernel is nonzero only for u = x + y > 0, i.e. the lower limit of integration in 
the Marchenko equation becomes -x. Its dependence on the variable v = x-y 
is relatively weak in the present example; it would disappear altogether if the 
threshold energies were all set equal to zero ( cf. Wadati and Kamij o 197 4). 

The matrix Marchenko equation (18) was solved on the interval [0, 4] 
using a bicubic spline interpolation (Press et al. 1992) for B(x, y). The re­
constructed potential matrix resulting from the inversion coincides with the 
original one up to a difference whose absolute value does not exceed 2 x 10-3 . 

In order to see the effect of the truncation in k-space we repeated the 
above calculation for kmax = 1.25, 2.5, and 5. The results are shown in Fig. 4. 
It is seen that the cut-off momentum introduces spurious oscillations in the 
potential which disappear when kmax 2 5. 

To study the sensitivity of the algorithm to experimental errors, we added 
numerically generated noise to the reflectivity for the test potential, 

R(k)--+ R(k) + 8R(k), (22) 

where 8R is a normally distributed random matrix with a standard deviation 
of 10-3 for the real and imaginary parts of all elements. The resulting error 
8V in the potential V 1 (using kmax = 10) is shown in Fig. 5. It appears that, 
in this example, the inversion is not very sensitive to experimental errors. 
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Fig. 2. The reflectivities ( k;/ k1 )jr;j j2 corresponding to the reflection matrix R(k ). 
The reflectivities in channel 2 are defined only above t.he threshold k2 = 0. 
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Fig. 3. The matrix elements of the kernel B(x, y) as functions of u = x + y and 
v = x - y. a) The diagonal elements bn and b22 as function of u = x + y, b) The 
nondiagonal element b21 as function of of u = x + y and v = x- y. 
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Fig. 4. The diagonal element vn of the reconstructed potential V ( x) for different 
values of the cutoff momentum kmax· For kmax = 5 the reconstructed Vn practically 
coincides with the original vn. 
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Fig. 5. The diagonal element v11 of the reconstructed potential V(x) for a reflection 
matrix with random noise (standard deviation) 5 10-3 . The results offour different 
runs are shown. 

4 Concluding Remarks 

We have derived the Marchenko integral equation for the coupled-channel in­
verse problern in one dimension in the presence of thresholds. These thresh­
olds introduce specific features in the input for the Marchenko equation, 
so that the latter is appreciably different from what is clone in the coupled­
channel inverse problern without thresholds, which closely resembles the single­
channel case. The Marchenko equation has been solved numerically for a sim­
ple two-channel test example, where the numerical algorithm has proved to 
be accurate and robust against random noise. 

It remains to extend the formalism to include bound states, and to apply 
it to cases of physical relevance. Such applications are most likely to be found 
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in the field of nanostructure devices. 
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Appendix: Computational Procedure 

To solve the Marchenko integral equation numerically, the integration over z 
is replaced by a summation over an equidistant grid and extrapolated in a 
similar manneras for the Rombergintegration (Presset al. 1992). Discretiza­
tion on the grid 

2x 
Ym=-x+(m-0.5)M, m=l,···,M 

with the constant weight 2x/ M, i.e., according to the repeated mid-point rule, 
transforms the Marchenko integral equation into a system of linear equations, 

2x N M 

bij(X, Ym) + 9ij(x, Ym) + M L L 9ik(X, Ym 1 )Bkj(Ym1 , Ym) = 0. (A.1) 
k=l m'=l 

This can be written in a matrix form as 

where g is an N x M -matrix , 

A an Mx M-matrix, 

and ß an N x M -matrix, 

(ß}i,(j-l)M+m = -bij(x, Ym). 

To solve this system we use the LU-decomposition of A followed by forward­
and backward-substitution employing the relevant routines from LAPACK 
(Anderson et al. 1992). 

To obtain G_(x, y) when y is not a grid point, we use the Nystrom method 
(Presset al. 1992), i.e., we insert our solution for G_ in the discretized version 
of the integral equation, (A.l), with Ym replaced by y. In practice, we start 
with a relatively small value of M and double it until the Romberg-tableau 
has converged to a given precision f. 
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In order to determine the potential matrixfrom (13) the function G_(x, x) 
is interpolated on a Chebyshev grid in the interval [xmin, Xmax). The Cheby­
shev coefficients d1 for the derivative are then obtained from the coefficients 
q, l = 0, 1, · · ·, L- 1, of the interpolating polynomial through a simplere­
cursion relation (Press et al. 1992). 
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Abstract. The application of the one-dimensional inverse scattering problern to 

neutron and x-ray specular reflection is discussed. Consideration is given to the 
problems of the numerical treatment as weil as to the limitations on the input, in 
particular, the phase problem. 

1 Introduction 

The scattering of low-energy neutrons is described by neutron optics ( cf. Sears 
(1989)) in the same fashion as the scattering of x-rays. Coldneutrons and x­
rays are used to investigate the structure of surfaces and interfaces of samples 
in the nanometer range ( cf. Russel (1990), Penfold and Thomas (1990), Kjaer 
and Ais-Nielsen (1988)). Neutron and x-ray scattering supplement each other 
in many respects. However, from the theoretical point of view, their analysis 
is the same. 

If the samples are planar we have to do with specular reflection and trans­
mission. This is essentially quantal scattering by a one-dimensional potential 
barrier. The determination of this potential from the scattering information 
is, then, the one-dimensional inverse scattering problem. Usually one takes 
recourse to a simulation, i.e. one chooses a model for the potential whose 
parameters are adjusted via a fit to the data. However, for an unambiguous, 
madel-independent answer one should solve the true inverse scattering prob­
lern [in x-ray and electron scattering this is often called the 'direct method' 
(!) ( cf. Pendry et al. ( 1 995) ), which is to say that the solution of the inverse 
scattering problern is sought directly, not indirectly by simulation ). 

In the recent past working numerical procedures for solving the inverse 
scattering problern in specular reflection have been developed ( cf. Corvi 
(1992), Sacks (1993), Lipperheide et al. (1995a)), and various met.hods for 
treating the phaseproblern have been proposed (cf. Rosset al. (1988), Sivia 
et al. (1991), Klibanov and Sacks (1992), Fiedeldey et al. (1992), Gudkov et 
al. (1993), Allman et al. (1994), Majkrzak and Berk (1995), de Haan et al. 
(1995)). Here we discuss the numerical solution of the Marchenko equation 
for a reconstruction of model potentials similar to t.hose occurring in realistic 
situations (Sect. 2). We consider the direct solution of the integral equation 
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and the method of Pade approximants. The case of samples on thick sub­
strates is troubled by rapid oscilations in the reflect.ivity; it is shown how this 
can be avoided by making use of inversion with a background potential for 
the substrate. In Section 3 we turn to the difficulties one encounters in actual 
applications. These arise, first, from the limitations on the accessible range of 
values of the incident momenta. Second, and more importantly, we are faced 
with the phase problem, i.e. the fact that, so far, the reflection phase cannot 
measured directly. It will be shown how this can be reduced to the problern 
of a discrete set of unknown parameters, and we remark on a number of pro­
posals for an actual measurement of the reflection phase. Section 4 contains 
a summary. 

2 Reconstruction of Realistic Model Potentials 

2.1 Numerical Solution of the Marchenko Equation 

Direct Solution. For a complex potential V ( x), with V ( x) = 0 for x < 0 
and in general V( x) ____. Vs for x ____. oo, the inverse problern is solved ( cf. 
Kay (1960), Reiss (1995), Lipperheide et al. (1995a)) by inserting the Fourier 
transform B( x) of the left reflection coefficient R( q), 

1 100 
0 B(x) =- dqe-•qx R(q) for x > 0, 

211' -00 

(1) 

B( x) = 0 for x < 0, in the Marchenko integral equation 

K(x, y) + B(x + y) + lxx dz B(z + y)K(x, z) = 0 with x > y (2) 

and solving for K(x, y); the potential is then given by 

11(x) = 2dK(x, x)jdx for x > 0, (3) 

V(x) = 0 for x < 0. The solution is found numerically by the method of 
Galerkin using B-spline polynomials (cf. Reinhardt (1985)). 

Pade Solution. When the range ofintegration is large, the direct solution of 
Eq. (2) becomes unstable, and it may be more convenient to use the method 
of Pade approximants, 

Ko(x, y) = -B(x + y) 

Kn(x, y) = -1: dzKn-l(x, z)B(z + y), n=l, ... ,NJ. (4) 

This leads to 

}-'( ) L~-o Cn(x, Y) 
\ x, y = N ' 

1 + Ln=l Dn(x, Y) 
(5) 
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where Cn and Dn are found from the equations 

N 

L KN+n-m(x, y)Dm(X, y) = -KN+n(x, y), 
m=1 

N 

L Kn-m(x, y)Dm(x, y) = Cn(:r, y), (6) 
m=O 

with Co(x, y) = Ko(x, y), D0 (x, y) = 1 and n = 1, · · ·, N. 

Example: Complex barrier with substrate. We present an example 

modelled on a realistic case, two double-layers of iron and silver on an in­

finitely thick glass substrate (cf. Fig. 1). In the numerical evaluation of 

the integral in Eq. (1) one must introduce a cut-off qc. For a short cut­

off, qc = 1 nm- 1 , the Marchenko solution and the potential obtained with 

the help of a (9,9)-Pade approximant are practically identical ( cf. Fig. 1a); 

the expected oscillations of period (7r/qc) = 3.14 um arevisible in the real 

part. After averaging over these oscillations the Marchenko solution is seen 

to reproduce the original potential. For a long cut-off, qc = 6 nm- 1 , the 

Marchenko solution can only be found with adequate accuracy at high com­

putational expense. However, when a (9,9)-Pade approximant is used, the 

reconstructed potential reproduces the original potential to good accuracy 

(cf. Fig. 1b). 

2.2 Two-Step Inversion with Background Potential 

For thick samples ( compared to the wavelength) the reflection coefficient 

contains the rapid so-called Kiessig oscillations resulting from the interference 
of the waves reflected from the front and back sides. This applies also to thin 

samples mounted on a thick substrate, e.g. a silicon wafer. These oscillations 

make a numerical calculation ofthe integral (1) impossible; however, they can 

be taken into account analytically in the full reflection coefficient R( q) via a 

known background scattering potential V 0 (x) representing the substrate. 

We introduce the rapidly oscillating reflection coefficient for the substrate 

alone, 

1 - exp(2iqd) 
Ro(q) = -a 1 2 (2"-d), - a exp 1q 

(7) 

where a = a(q) = (q- q)/(q + q) is the Fresnel coefficient for the substrate, 

d is its thickness, and q is the wave number in the substrate. The exponen­

tial exp(2iqd) gives rise to Kiessig oscillations of period 1r / d. However, the 

difference 

R(q) = R(q)- Ro(q) (8) 
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Fig. 1. Reconstruction of an iron-silver double-layer structure on a glass substrate. 
( a) The real and imaginary parts of the original potential (heavy curve) and their 
reconstruction by the Marchenko solution with the cut-off qc = 1 nm-1 (thin curve); 
the reconstruction via a (9,9) Pade approximant coincides with the Marchenko 
solution. (b) The real part of the original potential and its reconstruct.ion v1a a 
(9,9) Pade approximant with the cut-off qc = 6 nm- 1 . 

exhibits these oscillations only weakly. 
Theinversion formalismhas been derived by Ghosh Roy (1991) andReiss 

(1995). lnstead of the Fourier transform (1) one defines 
00 

B(x, y) = 2~ j dqfo(q, x)fo(q, y)R(q), (9) 
-00 

where the function fo(q , x) is the Jost solution for the substrate. The quantity 
B(x, y) replaces B(x, y) in the Marchenko equation (2), from whose solution 
K(x, t) one obtains the full potential in the form 

V(x) = V 0(x) + 2dK(x, x)jdx. (10) 

Example. An example of an inversion for a system consisting of a single 
layer on a substrate of finite thickness is shown in Fig. 2. The results of the 
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inversion with and without background potential coincide and reproduce the 
original potential in this example, where the substrate actually is rather thin 
(cf. Fig. 2a) . However , the computing time in the first case is very much 
shorter than in the second. This has to do with the different structure of the 
input for the Marchenko equation: R(q) is smooth, whereas R(q) is rapidly 
oscillating ( cf. Fig. 2b) . If we would consider a substrate with a. realistic 
thickness ofthe order of a millimeter, the inversion with backgroundpotential 
could be carried out as easily as in the present case, but the inversion using 
the full reflection coefficient could not be clone at a.ll. 

·e 
e 

60 

1, 40 

:; 
20 

,--

a ) 

I 
20 1.0 

xlnml 

o.s 
Q! nm· ' I 

Fig. 2. Inversion with and without background potential. ( a) The original potential 
for a single layer on a substrate of finite thickness; both types of inversion reproduce 
this potential. (b) The absolute square of the reflection coefficients R( q) (heavy 

curve) and R( q) ( thin curve). 

3 Practical Applications and Their Problems 

For the solution of the inverse scattering problern the complex reflection 
coefficient R(q) must be known as a complex function of both positive and 
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negative values of the incident momentum q, cf. Eq. (1). On the other hand, 
usually only the reflectivity JR(q)J 2 for 0 < q < lfc is measured, where qc 
generally is the cut-off momentum, for which the reflectivity has become too 
small to be measured. The input for negative values of q and the reflection 
phase must therefore be obtained from additional information. 

3.1 The Input of Momenta 

We begirr with some remarks on the range of momenta. The effect of the cut­
off qc has already been discussed in Sect. 2.1. As to the reflection coefficient 
for negative values of q, it is, for real potentials, simply given by the complex 
conjugate of the reflection coefficient for positive values ( cf. Chadan and 
Sabatier (1982)), R( -q) = R*(q), but for complex potentials this must be 
generalized to (cf. Lipperheide et al. (1996)) 

(11) 

where RR(q) is the reflection coefficient for incidence from the right, and 
7j is the momentum of the transmitted wave. We see that information on 
transmission and on reflection from the right (for q > 0) is required in order 
to determine the left reflection coefficient R(q) for q < 0. 

3.2 The Phase Problem 

The phase problern has plagued structure research by x-ray, electron- or 
neutron-scattering for decades (cf. Rosset al. (1988), Wareester (1991), Kram­
er (1991), Sivia et al. (1991), Klibanov and Sacks (1992), Fiedeldey et al. 
(1992), Persharr (1994), Lipperheide et al. (1995b )). The simulation approach 
represents the only means of determining potentials in the absence of phase 
information. In general it is non-unique, since different profiles may produce 
the same reflectivity. An inversion procedure, on the other hand, cannot even 
be started without phase information. 

The Reduction of the Problem. Some insight into the phase problern can 
be gained by observing that the reflection phase is not strictly independent of 
the reflectivity owing to the analytic properties of the complex reflection coef­
ficient. Fora real potential which vanishes on the negative half-axis, V(x) = 0 
for x < 0, and supports no bound states (this corresponds to most actual situ­
ations in neutron and x-ray reflectometry), the left reflection coefficient R(q) 
is analytic in the upper q-plane (cf. Rosset al. (1988), Klibanov and Sacks 
(1992), Chadan and Sabatier (1982)). It can be written in the form 

N rr (q- an q + a*) R(q) = --* __ n RH(q) = A(q)RH(q), 
n=l q- an q +an 

(12) 
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where we have introduced the Hilbert reflection coefficient 

RH(q) = IR(q)l exp[i <PH(q)] (13) 

with the 'Hilbert-phase' <PH(q) given, for real potentials, by 

00 

<PH(q) = -7r- 2q p J ln IR(q')l dq'. 
7r q'2- q2 

(14) 

0 

Thus the Hilbert factor RH(q) is completely determined by the reflectivity 
IR(qW, whereas the rational phase factor A(q) involving the zeros On of R(q) 
in the upper half-plane is unknown in the absence of phase data. 

The phase problem thus reduces to the problem of the zeros On, which 
represent the remairring ambiguity in the solution of the inverse scattering 
problem. Only a small number of them are expected to play a significant role. 

It is convenient to treat only the Hilbert reflection coefficient RH(q) in 
Eq. (12) by Marchenko inversion, yielding the Hilbert potential VH(x). The 
rational phase factor A(q) corresponds to a Darboux transformation, and 
leads to the full potential V(x) via the iterative scheme (cf. Chadan and 
Sabatier (1982), Fiedeldey et al. (1992), Reiss and Lipperheide (1996)) 

Vo(x) = VH(x), 
d2 d 

Vn(x) = Vn-1(x)- 2 dx2 ln Im[fn-1(on,x) dxfn-1(-o~,x)], 

V(x) = VN(x), (15) 

n = 1, ... , N. The function fn-1(q, x) is a Jost solution for the potential 
Vn_ 1(x). The two potentials VH(x) and V(x) yield the same reflectivity but 
different reflection phases. 

In order to illustrate the distribution of zeros, we consider neutron re­
flection by the two-step potential V(x) shown in Fig. 3. (cf. Crowley et al. 
(1991)), which gives rise to the zeros On:::::,; (2n + 1)(7r/4) + i0.173. Here the 
Hilbert potential VH(x) arising from the inversion of the Hilbert reflection 
coefficient RH( q) is not identical with the original potential V ( x) because of 
the presence of the zeros. 

lncluding the first, the first two, and the first ten pairs of zeros in the 
inversion yields the potential curves labeled 1, 2, and 10 in Fig. 3. It is seen 
that supplementing the Hilbert reflection coefficient with the 'missing ze­
ros' leadsback to the original potential. The 'reflectivity-independent' phase 
information is vested in a finite number of complex zeros. 

Example: X-ray reflection by liquid gallium. For an example we con­
sider a recent analysis of the surface of liquid gallium using x-ray reflection 
(cf. Regan et al. (1995)). Here a peak of the reflectivity at incident momen­
tum qp :::::,; 12 nm- 1 has been interpreted as a quasi-Bragg peak generated 
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Fig. 3. A potential V ( x) , the corresponding Hilbert potential VH ( x), and the po­
tentials arising from the inclusion of the first, the first two, and first ten zeros of 
the reflection coefficient. 

by a surface layering of the density with spacing d = ( 1r / qp) ~ 0. 26 nm. A 
good fit can be obtained using the potential represented by the thin curve in 
Fig. 4. 

1 ~ 

J 
.? 
> 
> 0.5 

x lnrnl 

Fig. 4. The normalized potential profile for x-ray reflection by liquid gallium. Two 
profiles are shown which yield the same reflectivity. The profile represented by the 
thin curve is changed into that given by the heavy curve when the pair of zeros 
(±12.27 + i 0.73) is included in the reflection coefficient. 

However, this potential is not unique. Taking the reflection coefficient 
calculated from it as R(q), a new reflection coefficient R1(q) can be defined 
by applying relation (12) with a singlepair of zeros a = ±12.27 + i 0.73. The 
profile corresponding to R1(q), as calculated by the procedure (15), has the 
form shown by the heavy curve in Fig. 4. It differs from the originalprofilein 
that it is shifted and less damped. Nevertheless, in the absence of any further 
physical arguments, it appears to be as acceptable as the original profile. 

The scheme discussed above is useful for testing the 'physical uniqueness' 
of simulated profiles fitting measured reflectivities. It represents a step in the 
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direction of a systematic and complete investigation of the well-recognized but 
often somewhat recondite phase ambiguities. The complete phase problern 
can be resolved only with the help of actual measurements of the phase. 

Measurement of the Phase. Several proposals have been made for mea­
surement of the reflection phase. Sivia et al. (1991) and Gudkov et a.l. (1993) 
consider a reference layer method where the reflection phase is determined 
via the interference with the reflection from a known reference layer; this 
method is used in optics and can also be applied to neutron and x-ray scat­
tering. Allman et al. (1994) propose a 'Lloyd's mirage' technique which makes 
use of the interference with a coherent reference beam. Finally, a method for 
neutron scattering has been investigated where the relation between the re­
flection phase and the 'dwell time' of the neutron in the sample (measured 
via absorption) is exploited (cf. Fiedeldey et al. (1992)). 

In the following we examine a very promising method using polarized 
neutrons, which has recently been proposed by two groups ( cf. Majkrzak and 
Berk (1995), de Haan et al. (1995)). We consider an arrangement (cf. Fig. 
5) where the potential V(x) of the sample (assumed to vanish for x < a) is 
super-imposed by the potential 

U(x) 

Q X 

Fig. 5. An arrangement for measuring the complex reflection coefficient of the sam­
ple represented by the potential V(x), super-imposed by a 'magnetic potential' 
U(x). The substrate is represented by the potential V. 

U(x) cx u · B(x), (16) 

U(x) = 0 for x < 0, generated by an external magnetic field B(x), and which 
depends on the polarization Uz = ±1 of the incident neutron. The 'magnetic 
potential' may be due to a magnetic field in vacuum or to the magnetization 
in e.g. a cobalt layer in front of the sample. The total reflection coefficient 
for Uz = ±1 and B(x) = IB(x)l z is 
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R±(q) = 1J±(q)R(q)exp(2iaq) + Pt(q) (17) 
1- R(q)exp(2iaq)p~(q) 

where R(q) is the reflection coefficient of the sample alone, PtR and rfR 
are the (left, right) reflection and transmission coefficients for the magnetic 
potential alone, and 

(18) 

The measured total reflectivity is given by IR±(qW. Equation (16) then yields 

i?J±(q)R(q)exp(2iaq) + Pt(q)i 2 = 11- R(q)exp(2iaq)p~(q)I 2 IR±(q)l 2 , (19) 

and one can extract the complex reflection coefficient of the sample, R(q), 
from measurements of IR±(q)l 2 for three different magnetic fields B(x) or 
shifts a. 

This method has two limitations. For q2 < V, i.e. below the critical mo­
mentum of the substrate, one has IR(q)l = IR±(q)l = 1. It can be shown that 
in this case Eq. (19) does not yield any information on the phase of R(q). 
Second, the Kiessig oscillations associated with the exponential exp(2iaq) will 
destroy the phase information on R(q) if a is !arger than the inverse of the 
experimental error in q. 

These limitations can be removed in principle when, instead of the reflec­
tivities, one considers the polarisations of the reflected neutrons, and when 
the magnetic field is allowed to enclose the entire sample ( cf. Leeb et al. 
(1996)). 

4 Summary 

The application of the one-dimensional inverse scattering problern to neutron 
and x-ray specular reflection has been discussed. A numerical algorithm is 
proposed which allows one to treat scattering samples on substrates. The 
phase problern is reduced to the problern of a discrete set of parameters, 
and proposals for measuring the reflection phase are critically examined. All 
these problems show promise of practical solution in the near future, so that 
analyses of reflection experiments by madel-independent and unique inversion 
can hopefully be carried out in the near future. 

References 

Allman B. E., Klein A. G., Nugent K. A., and Opat G. I. (1994) J. Appl. Opt. 33 
1806 .. 

Chadan K. and Sabatier P. C. (1982), Inverse Problems in Quantum Scattering 
Theory, 2nd edition, Springer, Berlin. 

Corvi M. (1992), in Inverse Problems in Scattering and Imaging, Bertero M. and 
Pike E. R., Eds., Hilger, Bristol, Philadelphia, New York, p. 411. 



74 R. Lipperheide, G. Reiss, and H. Leeb 

Crowley T.L., Lee E.M., Sinister E.A., and Thomas R.K. (1991), PhysicaB 173, 
143. 

de Haan V. 0., van Well A. A., Adenwalla S. and Felcher G. P. (1995), Phys. Rev. 

B 52, 10831. 
Fiedeldey H., Lipperheide R., Leeb H. and Sofianos S. A. (1992), Phys. Lett. A 179, 

347. 
Ghosh Roy D. N. (1991), Methods of Inverse Problems in Physics, CRC Press, 

Boston. 
Gudkov V. P., Opat G. I. and Klein A. G. (1994), J. Phys.: Condensed Matter 5, 

9013. 
Kay I. (1960), Comm. Pure and Applied Math. 13, 371. 

Kjaer K. and Als-Nielsen J. (1988), Thin Solid Films 159, 17. 
Klibanov M. V. and Sacks P. E. (1992), J. Math. Phys. 33, 3813. 

Kramer E. J. (1991), Physica B 173, 189. 
Leeb H., Lipperheide R., and Kasper J. (1996), tobe published. 
Lipperheide R., Reiss G., Leeb H., Fiedeldey H., and Sofianos S. A. (1995a), Phys. 

Rev. B 51, 11032. 
Lipperheide R., Fiedeldey H., Leeb H., Reiss G., and Sofianos S. A. (1995b), Physica 

B 213&214, 914. 
Lipperheide R., Reiss G., Leeb H. and Sofianos S. A. (1996), Physica B 221, 514. 

Majkrzak C. F. and Berk N. F. (1995), Phys. Rev. B 52, 10827. 
Pendry J. B., Heinz K., and Oed W. (1988), Phys. Rev. Lett. 61, 2953. 

Penfold J. and Thomas R. K. (1990), J. Phys. Cond. Matter 2, 1369. 

Pershau P. S. (1994), Phys. Rev. E 50, 2369. 
Pershau P. S. (1996), Proc. Materials Research Society, Boston, MA, ed. B. J. Wuen­

sch (to appear in vol. 376 of the Materials Research Society). 
Regan M. J., Kawamoto E. H., Lee S., Pershau P. S., Maskil N., Deutsch M., Mag­

nussen 0. M., Ocko B. M., and Berman L. E. (1995), Phys. Rev. Lett. 75, 2498. 

Reinhardt H.-J. (1985), Analysis of Approximation Methods .for Dijje1·ential and 

Integral Equations, Springer Ser. Appl. Math. Sei. 57, Springer, Berlin. 

Reiss G. (1995), Ph.D.-Thesis, Freie Universität Berlin. 
Reiss G. and Lipperheide R. (1996), Phys. Rev. B 53, 8157. 
Ross G., Fiddy M. A., and Nieto-Vesperinas M. (1988), in Inverse Scatte1·ing Prob-

lems in Optics, Baltes H. P., Editor, Springer, Berlin. 
Russel T. P. (1990), Materials Science Reports 5, 171. 

Sacks P. E., Wave Motion 18, 21. 
Sears V. F., Neutron Optics, Oxford University Press, Oxford, 1989. 

Sivia D. S., Rarnilton W. A. and Smith G. S. (1991), Physica B173, 121. 

Worcester D. L. (1991 ), Physica B 173, 139. 



Non-standard Information 
in Optical Model Analyses 

H. Leeb 1 , H. Huber1 , B. Apagyi2 

1 Institut für Kernphysik, Technische Universität Wien, Wiedner Hauptstr. 8-
10/142, A-1040 Wien, Austria 

2 Department of Theoretical Physics, Technica.l U niversity of Budapest, Budafoki 
ut 8, Budapest, Hungary 

Abstract. At the example of 12 C-12 C elastic scattering it is shown that the S­
matrix at non-integer values of the orbital angular momentum quantum number 
conta.ins valuable information which should be taken into account in the analysis of 
scattering data at fixed energy. The possibility of the available global inversion pro­
cedures to include such non-standard S-matrix va.lues is discussed. Specifically, an 
extended Newton-Sabatier method based on the interpolation formulae of Sabatier 
is worked out and subsequently used to demonstrate the role of this information to 
reduce the inherent ambiguities of the inverse scattering problern at fixed energy. 

1 Introduction 

In the last two decades there has been considerable progress in the measure­
ment and understanding of nuclear scattering processes. Nowada.ys, mea­
surements of the ela.stic sca.ttering cross sections ca.n be performed with high 
accura.cy (see e.g. [1]). A similar step forward has been achieved in the the­
oretical description of nuclear processes [2]. A basic tool of the theory is the 
optical potential which is a complex effective two-body interaction describing 
the elastic scattering explicitly. 

Because of its basic role there has been many attempts to evaluate optical 
potentials microscopically [3]. The proper treatment of the multi-nucleon sys­
tem, however, is rather difficult and our knowledge about the optical potential 
is far from being satisfactory. Among the various approaches the folding po­
tentials based on different theoretically motivated nucleon-nucleon potentials 
are working best. In general they yield a satisfactory description of the gross 
structure but fail to reproduce details of the observed elastic cross sections. 

An alternative way to determine optical potentia.ls is the a.nalysis of elastic 
scattering data. In the standard notation this is called an inverse problem 
at fixed energy. Most of this so-called optical model analyses are performed 
via simulation, where the parameters of a reasonable potential ausatz are 
adjusted in order to describe the experimental data. There exists a great 
variety of such simulations ranging from simple potential fits [5], [6] to rather 



76 H. Leeb, H. Huber, B. Apagyi 

sophisticated procedures [7]. A common feature of ail these methods is their 
uncontroilable trajectory in the parameter hyperspace and consequently their 
unknown dependence on the starting values. Hence, they are denoted as local 
inversion procedures [8]. 

An elegant and more fundamental way to determine optical potentials 
from scattering data is given by the use of global inversion procedures. They 
are characterized by an analyticaily known relationship between S-matrix and 
potential. In the fifties and sixties many solutions of various inverse problems 
in quantum scattering theory have been given by mathematical physicists 
[9], [10], [11], [12]. These solutions, however, are mathematicaily rather in­
volved and the formulation of manageable numerical algorithms has only 
been started at the beginning of the eighties. In the last decade considerable 
progress has been achieved and many successful applications to experimen­
tal data underline the increasing importance of global inversion methods 
[13], [14], [15]. 

The determination of optical potentials from scattering data at a single 
energy is far from being unique. In principle there are two sources of ambi­
guities. The first one is related to the determination of the S-matrix from 
scattering data because the observables do not contain the complete phase 
information. The second source of ambiguity is the fact that observables at 
a single energy yield the S-matrix only at a finite m1mber of integer values of 
the orbital angular momentum quantum number C. From scattering theory it 
is weil known that this is not sufficient to determine a unique potential [16]. 

In this paper we deal with the latter type of ambiguity which represents 
an inherent difficulty in ail inverse scattering problems at fixed energy. In 
particular we will show in section 2 at the example of 12C-12C scattering 
that values of the S-matrix at non-integer C-values contain important infor­
mation on the potential. Such values of the S-matrix can easily be included 
in the global inversion scheme of Lipperheide and Fiedeldey [17] as weil as 
in the semiclassical WKB-method. At present the standard matrix method 
of N ewton-Sabatier [11] which is best suited for analyses at lower energies 
cannot include the S-matrices at non-integer C-values. Therefore adapting 

properly the interpolation formulae of Sabatier [18] we present in section 3 
an extended Newton-Sahatier method for central potentials which includes 

the S-matrix also at the half-integer R-values. Section 4 is devoted to vari­
ous applications of this method in order to demonstrate the importance of 
such non-standard S-matrix values. Finaily, concluding remarks are given in 

section 5. 

2 The inherent ambiguity of inversions at fixed energy 

The inverse scattering problem in quantum mechanics at fixed energy deals 
with the determination of the potential from the knowledge of the associated 
S-matrix at a given energy. In principle it is a specific spectral problem based 
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on the radial Schrödinger equation, 

(1) 

where p = kr with k being the wave number, V(p/k) = EU(p) is the po­
tential, E is the center of mass energy, and A is related to the orbital angu­
lar momentum quantum number i by A = i + ~. Since we are considering 
inverse scattering problems at fixed energy we will suppress the k~ and E~ 
dependence of the various functions in the following. For the description of 
scattering processes the so~called regular solution 1>(p; A) of Eq. (1) is of in­
terest. This solution vanishes at the origin and is therefore uniquely defined 
apart of its normalisation. At asymptotic distances the regular solution can 
be written as a superposition of regular and irregular Coulomb functions 
F(p; A, 'TJ) and G(p; A, 'TJ), respectively. Hence 1>(p; A) takes the form 

q>(p; A)r~A(A) [(S(A) + 1) F(p; A, 'TJ) + (S(A)- 1) G(p; A, 'TJ)] , (2) 

where 'TJ is the Sommerfeld parameter and A(A) is an arbitrary amplitude 
factor. The asymptotic behaviour of 1>(p; A) is chara.cterized by the S-matrix 
S(A). From the mathematical point of view there is no restriction on the 
values of A and k and for arbitrary complex values of these qua.ntities a 
regular solution can be given. 

Optical model analyses aim at the determination of optical potentials from 
the knowledge of the scattering observables at a given energy. Let us assume 
that we can extract the corresponding values of the S-matrix uniquely. Thus 
the inverse scattering problern at fixed energy is reasonably posed and several 
solutions have been given in the Iiterature (12). An important question with 
regard to the central goal of the present paper is the question of uniqueness of 
the inverse problern at fixed energy. Already in 1968 Loeffel (16) could show 
that the potential is uniquely defined, if the S-matrix is known for ReA ~ 0. 

The theorem of Loeffel reflects the mathematical structure of the radial 
Schrödinger equation but does not correspond to the situation of an analysis 
of scattering data at a given energy in terms of an optical potential. This can 
easily be seen from the calculations of cross sections in quantum mechanics. 
For simplicity we restriet ourselves again to the scattering of spinless particles 
with central interactions. In this case the scattering amplitude, 

1 00 

f(B) = 2ik L 2A [S(A)- 1) Pt(cos(B)), 
l=O 

(3) 

depends only on the scattering angle (} and the S-matrix at the half-integer 
values of A. Hence, it is obvious that scattering observables yield information 
only on these specific values of the S-matrix which are often denoted as the 
standard or physical ones. The S-matrix at other values of the argument is 
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not directly accessible to experiment at the given energy and these values are 

therefore called, in what follows, non-standard or unphysical. 

In practice elastic scattering data determine S-matrix values only at a 

finite number of half-integer .A-values. This is not sufficient to extract unique 

potentials from such analyses. Further assumptions about the S-matrix at 

non-standard .A-values are required to improve the situation and to associate 

a reliable potential with the scattering data. In a rather hidden and uncon­

trollable way this is clone in local inversion proceclures via the ausatz of a 

parametrizecl dass of potentials. In global inversion proceclures based on ex­

actly solvable models [11], [17], [9] these assumptions become more evident 

because they yield classes of S-matrices defined on the whole complex .A­

plane. The situation becomes particularly clear for the rational scheme [17], 

where parameters (ai, ßi) of the explicitly given S-matrix, 

_ N (_A2 _ ßl) 
S(.A)- So(.A)}] (V_ al), (4) 

are adjusted to reproduce the scattering data. Here S0 (.A) is the S-matrix 

corresponding to an appropriately chosen background potential V0 . Because 

of the speci:fic analytic form the values of the S-matrix at the half-integer .A­

values determine the parameters ( ai, ßi) and thus the S-matrix in the complex 

.A-plane. Hence, the application of different exactly solvable models to the 

same scattering data can Iead to different potentials. 

In the following we give an example where this feature of exactly solvable 

models shows up. We consider the analysis of 12 C-1 ~C phase shift da.ta which 

have been extracted from experimental cross sections mea.sured by Ledoux et 

al. [20]. An extensive study of the a.ssocia.ted potentials obta.ined in the so­

called Newton-Saba.tier inversion method has been given by Ma.y a.nd Scheid 

[14]. In this system there is a. quasi-molecular resonance which Iead to a. char­

a.cteristic structure of the pha.se shifts. At Ecm = 18.5 MeV this resona.nce 

affects the behaviour of the phase shifts in the vicinity of R = 11 which, how­

ever, cannot be seen in experiment at this energy because of the identity of 

the colliding pa.rticles. Therefore, May and Scheid [14] employed the Newton­

Sahatier inversion scheme assuming different values of the S-matrix a.t R = 11 

and obtained the potentials denoted by MS in Fig. 1. For comparison we have 

used the same phase shift data in the mixed inversion scheme of Lipperheide 

and Fiedeldey (see e.g. [13]). In Fig. 1 the corresponding potentia.ls are com­

pared with the results of the Newton-Sa.batier method of May and Scheid 

[14]. In the case of 811 = 57.3 degrees both methods Iead to rather similar po­

tentials. Und er the a.ssumption of 811 = 17 4.2 degrees a huge difference of the 

potentials is observed. Because the S-matrix at sta.ndard .A-values is equally 

reproduced by the potentials of both procedures this difference is related to 

the different behaviour of the phase shifts at non-standard .A-values. 
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Fig.l. Potentials obtained by inversion of 12 C-12 C phase shift data of Ledoux et 
al. [20) at Ec.m. = 18.5 MeV assuming different values of the phase shift at e = 11. 
The potentials of May and Scheid [14) are compared with those obtained by the 
mixed scheme of Lipperheide and Fiedeldey [17) . 

3 Extended Newton-Sahatier method 

The inclusion of additional information concerning the S-matrix at non half­
integer A-values into global inversion procedures will be an important step to 
gain reliability of the extracted potentials. As far as we know all applications 
of global inverse scattering methods to optical model analyses of experimental 
data are based either on semiclassical approximations or exactly solvable 
models. The latter are derived from Darboux transformations [9] of the radial 
Schrödinger equation and include the weil known methods of Lipperheide 
and Fiedeldey [17] and the matrix method of Newton and Sabatier [11]. 
The rational and nonrational schemes of Lipperheide and Fiedeldey [17] are 
characterized by rather simple analytical forms of the S-matrix with open 
parameters. It is a Straightforward extension to adjust these parameters to 
the S-matrix not only at the standard but also at non-standard A-values. The 
same is true for the semiclassical WKB-potential [21] where an analytical 
form of the S-matrix is required to evaluate the associated quasi-potential. 

Both methods work best at rather high energies but lead to difficulties in 
analyses of low energy data. At lower energies the matrix method of Newton 
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and Sabatier (11] is weil suited and many successful applications of this pro­
cedure have been reported in the literatme (22]. This method is based on the 
fundamental relation (see e.g. (12], chapters XI and XII) 

«P(p; >..) = u(p; >..) -lP dp' K(p, p')u(p'; >..), (5) 

where «P(p;)..) and u(p;)..) are physical solutions associated with the inter­
actions U(p) and Uo(p), respectively. The so-called transformation kernel 
K(p, p') satisfies the integral equation 

K(p, p') = Q(p, p') -lP dss- 2 K(p, s)Q(s, p') (6) 

and depends on the S-matrix of the unknown potential U (p) via the spectral 
kernel Q(p, p'). The potential U(p) can be obtained from K(p, p') via, 

2 d [ 1 ] U(p) = Ua(p)- P dp PK(p, p) , (7) 

thus solving the inverse scattering problem. 
It is the basis of matrix methods (12], (9] to assume for the spectral kernel 

the separable form 

Q(p, p') = 2:.:: C>-. u(p;).. )u(p';)..) , 
>-.Eil 

(8) 

where [l may be any set of numbers in the half plane Re>.. > -~, provided 
that the summation of Eq. (8) exists. As can easily be seen from Eq. (6) this 
specific form of Q(p, p') results in the separable transformation kernel 

K(p, p') = 2:.:: c>-.<f>(p; >..)u(p'; >..). 
>-.Eil 

(9) 

Enteringthis expression in Eq. (5) yields reformula.ted equations for the wave 
functions 

«P(p; >..) = u(p; >..)- 2:.:: C>-.L(p; >.., >..')«P(p; >..') (10) 
>-.Eil 

with 

L(p;).., >..') = lP dss- 2 u(s; >..)u(s; >..'). (11) 

This system of coupled equations, Eqs. (11,12), is used to determine the 
potential coefficients C,>.. from the asymptotic behaviour of the wave function 
and thus from the S-ma.trix. For a set [l with a finite number of elements it 
has been shown recently (9] that these matrix methods represent a subdass 
of Darboux transformations of Eq. (1 ). 
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The set Q ofthe standard Newton-Sabatier method consists of allpositive 
half-integer >.-values, Q = g, ~' ~' · · -}. Hence, only the S-matrix at so­
called standard >.-values enter the (standard) Newton-Sabatier inversion. 

To achieve our goal and to include the S-matrix also at non-standard 
values in a matrix inversion method we must extend the set Q to contain 
also non-standard >.-values. In the following we consider the specific set Q 
involving positive integers and half-integers which has been discussed by 
Sabatier [23]. 

The implementation of non-standard S-matrix values in the numerical 
procedure is performed analogously to the standard N ewton-Sabatier method 
via Eqs. (2) and (11). In order to obtain a unique solution of Eq. (11) we 
employ the same modification as Münchow and Scheid [24] and assume that 
the potential for r > r 0 = p0 / k either vanishes or is equal to the Coulomb 
potential from the scattering system. Consequently, the wave functions for 
p > p0 are given by Eq. (2) and the system of coupled linear equations for 
the potential coefficients C).., Eq. (11), can be written down for several rr­
values with p > p0 . We solve this overdetermined system of equations for the 
potential coefficients C).. by a least square method. The potential coefficients 
C).. obtained are then used to evaluate <f;(p; >.) and the potential U (p) for 
Ü :S P :S Po· 

In principle the method is a straightforward extension of the procedure 
of Münchow and Scheid [24]. We face the additional problem, however, that 
we must provide the Coulomb functions at non-standard >.-values. For this 
purpose the code COULFG [25], which has the required options, has been 
used for the examples discussed in section 4. 

4 The importance of the S-matrix 
at non-standard A-values 

The possibility to include non-standard S-matrix values in global inversion 
procedures enables us to study the effect of this additional information on the 
potential. We are not aware of any calculations in the recent Iiterature which 
has studied this specific aspect with respect to its applicablity in analyses 
of scattering data. We focus our interest to the extended Newton-Sabatier 
method because in this inversion procedure the inclusion of non-standard 
>.-values is less obvious compared to inversion algorithms with an explicitly 
given analytic form of the S-matrix. 

First of all we perform a comparison of the standard and the extended 
Newton-Sabatier method by schematic examples. This is particularly inter­
esting for the inversion of scattering data at rather low energies, where only 
very few partial waves with their corresponding S-matrix values can be ex­
tracted from experiment with reasonable accuracy. Consequently the input 
information for the standard Newton-Sabatier method is rather limited and 



82 H. Leeb, H. Huber, B. Apagyi 

one cannot expect reliahle inversion potentials. The situation improves sig­
nificantly in the extended Newton-Sahatier method hecause the input infor­
mation is douhled. 

To show the effect of the additional information we consider a schematic 
example of n-o: scattering helow ELab = 100 MeV where the spin-orhit term 
as well as the imaginary part have heen ignored. For the real part we assume 
a Woods-Saxon shape with the parameters V0 = -41.8 MeV, Ra = 2.365 
fm, and a0 = 0.25 fm corresponding to the n-o: parameters of Satchler et 
al. [26] at ELab = 1 MeV. Because of the rather small radial range the 
numher of significant partial waves is smaller tha.n 10 even at ELab = 100 
MeV. Using this potential the phase shifts at sta.ndard and non-standard 
.A-values have heen evaluated at several energies. These values have heen 
used in inversion procedures. The reconstructed potentials ohtained hy the 
standard and the extended Newton-Sahatier method are displayed in Fig. 2 
tagether with the original one. A comparison of the results clearly exhihits 
the improvement of the reproduction hy the use of non-standard S-matrix 
values. The improvements are most striking at lower energies where only few 
partial waves can he used. 

10 10 

0 E = 100 MeV ... 0 E, = 75 MeV .. 
-10 -10 

:: -20 > -20 
~ 

u 
~ 

> -30 -30 
> 

-40 -40 

-50 -50 
R (Im) R (Im) 

-60 -60 
4 0 

10 10 

E, =50 MeV 0 E, = 25 MeV 0 .. .. 
-10 -10 

> -20 > -20 
" " ~ ~ 

-30 > 
-3 0 

> 
-40 -40 

-50 I -50 

! R (Im) R (Im) 
-60 -60 

0 4 0 

Fig. 2. Comparison of the reproduction of a schematic real n-a potential of 
Woods-Saxon form ( dashed lines) from the phase shifts by inversion applying ei­
ther the Newton-Sahatier method (dotted lines) or the extended Newton-Sahatier 
method (solid lines). The parameters of the original potential are given in the text. 
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The number of partial waves entering the analyses of heavy-ion scattering 
data is rather high even at low energies because of the large radial extension. 
One faces, however, the problern that the lowest partial waves are strongly 
absorbed and their phase shifts are not well determined from experiment. It 
is therefore worthwhile to study whether the additional informationentering 
the extended Newton-Sahatier method willlead to an improved reconstruc­
tion of the potential also in this case. We consider therefore a schematic 
12C-12 C potential of Woods-Saxon form. The pa.rameters have been cho­
sen to be VR = 18.0 MeV, RR = 2.315 fm, aR = 0.73 fm, VI = 2.5 MeV, 
R1 = 2.315 and a1 = 0.73 which corresponds to the gross structure of the in­
version potentials displayed in Fig. 1. Following the same procedure as above 
we apply the standard and the extended N ewton-Sabatier method to the 
corresponding S-matrix. In this example sufficient scattering information is 
available and excellent reproduction is obtained by both inversion methods 
(Fig. 3). Considering the inversion potentials in detail the extended Newton­
Sahatier method yields better results over the whole radial range. Both ex­
amples demonstrate the importance of additional S-matrix information to 
improve the reproduction of potentials. The suppression of the S-matrix at 
low f-values by absorption does not change this finding. 

The role of the information contained in the S-matrix at non-sta.ndard f­
values can easily be investigated by the extended Newton-Sahatier method. 
For this purpose we consider the example of 12C-12 scattering at ELab = 28 
MeV and assume slight modifications of the S-matrix a.t non-standard >.­
values. To simplify the inversion calculations we restriet ourselves again to 
the Woods-Sa.xon potential with the parameters VR = 18.0 MeV, RR = 2.315 
fm and aR = 0.73 fm, Vr = 2.5 MeV, R1 = 2.315, ar = 0.73, and the Coulomb 
ra.dius Re = 3.7 fm. This potential can reasonably be reproduced from the 
corresponding phase shift data by application of the standard a.s well as 
by the extended Newton-Sabatier method (Fig. 3). The modifications from 
the S-matrix Sw s (>.) evaluated from the Woods-Saxon potential have been 
assumed as, 

( 1 -~) Smod(>.) = S'ws(>.)exp 2iAsin((>.- 2")1r)e ß2 (12) 

where the parameters A, >.0 , and ß determine the strength, the position and 
width of the modifications in >.-space. It is obvious that this specific form of 
the modifications does not change the S-matrix at integer f-values, thus al­
ways leading to the sameinversionpotential in the standard Newton-Sahatier 
method. In order to demonstrate the effect of unphysical values we have fixed 
the para.meters >. 0 = 8 and ß = 2 and perform inversions by the extended 
Newton-Sahatier method varying the strength parameter A. The resulting 
potentials shown in Fig. 4 exhibit the strong dependence of the inversion 
potential on the so-called non-standard information. Thus it is obvious that 
reliable potentia.ls via global inverse scattering procedures can only be ob­
tained with inclusion of such additional information. This is particularly true 
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Fig. 3. Comparison of the reproduction of a complex 12C-12 C potential of 
Woods-Saxon form (dashed lines) from the phase shifts at Ec.m. = 28 MeV by in­
version applying either the N ewton-Sabatier method ( dotted lines) or the extended 
Newton-Sahatier method (solid lines). The parameters of the original potential are 
given in the text. The figure shows a) the real potential, b) the imaginary potential 
and c) the difference between the inverted and original real potentials. 

for systems with identical particles where part of the usually accessible infor­
mation is hidden hy the symmetry properties of the scattering amplitude. 

5 Conclusions 

At the example oflow energy 12C-12C scattering we have pointed out that the 
information contained in the S-matrix at non-standard A-values is essential to 
determine uniquely potentials from phase shift data via inversion techniques. 
It is Straightforward to include such S-matrix values into the WKB inversion 
method [21] as well as into the mixed inversion scheme of Lipperheide and 
Fiedeldey [17], which are hest suited for applications at sufficiently high en­
ergies. At lower energies the Newton-Sahatier inversion method [11] has heen 
successfully applied in the past, which in its standard version cannot take 
into account the beha.viour of the S-matrix at non-standard A-values. 

To study the effect of additional information on the S-ma.trix at relatively 
low energies we have considered an extended Newton-Sahatier scheme which 
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Fig.4. Modification ofthe inversion potentials generated by changes ofthe 12 C-12 C 
scattering phase shifts at Ec.m. = 28 MeV at non standard f-values. The figure 
shows a) the modifications of the phase shifts, b) the inversion potentials. 

is based on the knowledge of the S-matrix at integer and half-integer .A-values 
[23]. The application of this extended method is performed analogously to 
the inversion procedure introduced by Münchow and Scheid [24] assuming 
that the potential is known for large radii. 

Although the method has already been given by Sabatier in 1967 we are 
not aware of any numerical application to nuclear scattering data. Our first 
calculations on schematic n-a- and 12C-12C-scattering data clearly indicate 
that there is an improved reproduction by the extended method compared 
to the standard one. In a further example we modified the S-matrix only 
at non-standard .A-values and applying the extended Newton-Sahatier proce­
dure we could demonstrate the sensitivity of the potentials on this additional 
information. 
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Summarizing our results we can conclude that some knowledge about the 
behaviour of the S-matrix at non-standard A-values is required to extract 
reliable optical potentials from scattering data at a single energy. This is 
particularly true for the theoretically formulated inversion method which 
takes into account central and spin-orbit terms [27). Recently this method 
has been reformulated and implemented numerically [28) so that applications 
to optical potential analyses can be expected in the near future. 

At this point there arises the important question, how to obtain reliable 
information on the S-matrix at non-standard A-values. A promising way to 
gain this information seems tobe a fit of a reasonably parametrized S-matrix 
to describe the cross sections at different energies simultaneously. Although 
only the S-matrix at half-integer A-values enters into the fit at each energy 
one can expect to get a reliable interpolation for non-standard A-values if 
cross section data at neighbouring energies are used. Because of the complex 
scattering phenomena in nuclear systems it is difficult to give a general form 
for the parametrisation of the S-matrix. 

A severe problern will be the rather great sensitivity of the inversion 
potentials on the non-standard scattering information. Thus non suitable 
interpolations of the S-matrix may lead to oscillating potentials which arenot 
useful for further calculations in nuclear physics. Apart from these difficulties 
the extended Newton-Sahatier method will be most valuable for low energies 
where only limited partial waves are significant. 
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N umerical Method for Solving the Inverse 
Problem of Quantum Scattering Theory 

Ruhen G. Airapetyan, Igor V. Puzynin, and Eugeni P. Zhidkov 

Joint Institute for Nuclear Research, Laboratory of Computing Technics and 
Automation, Dubna, 141980, Russia 

Abstract. We present a new numerical method for solving the problern of the 
reconstruction of interaction potential by a phase shift given on a set of closed 
intervals in (l, k )-plane, satisfying certain geometrical "Staircase Condition". The 
method is based on the Variable Phase Approach and on the modification of the 
Continuous Analogy of the Newton Method. 

1 lntroduction 

The problern of the numerical reconstruction of potential by scattering data 
is well known and important from the mathematical point of view and for 
such physical applications as the analysis of a nuclear interaction potential 
by experimental data. The main approaches for theoretical investigations of 
the problern are well-known Gelfand-Levitan, Marchenko and Krein meth­
ods (Agranovich and Marchenko (1960), Marchenko (1977), Levitan (1984)), 
Chadan and Sabatier ( 1977,1989)). At the same time the development of the 
corresponding numerical methods is sufficiently complicated by the reason of 
the ill-posedness of the mentioned inverse problems. 

In this report we consider a new statement of the inverse problern of the 
Quantum Scattering Theory and suggest the numerical method for its solving. 
To this end we describe the Newtonian Iterative Scheme with Simultaneaus 
Iterations of the Inverse Derivative and formulate the theorem establishing 
its convergence. Then we use the method for the inverse problern for radial 
Schrödinger equation in more general statement than in Gelfand-Levitan­
Marchenko-Krein Theory. 

2 Statement of the Problem 

The following Cauchy problern for the radial Schrödinger equation is consid­
ered: 

d2 ( 2 1(1+1)) dr2 rfo(l, k, r) + k - r 2 tfo(l, k, r) = V(r)rfo(l, k, r) (1) 

lim(2/ + 1)!!r-1- 1rfo(l, k, r) = 1 . 
r_,.Q 

(2) 
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It is well-known that for the potentials satisfying the condition 

00 

j riV(r)idr < oo 

0 

the wave function has the following asymptotic behaviour: 

IF(l, k)l . 1fl 
</;(!, k, r),...., kl+l sm(kr- 2 + 8(1, k)) r---> oo 

where F(l, k) is the Jost Function. 

(3) 

(4) 

TheInverse Problem of the Quantum Scattering Theory is the problern of 
the reconstruction of an unknown potential V(r) by some given information 
about phase shift 8(1, k). 

Note. For details and complete bibliography we refer to Chadan and Sabatier 
(1977,1989), Ramm (1992), von Geramb (Ed.) (1994), Zakhariev and Suzko 
(1990), Zakhar'ev (1996) . 

A potential in (1) is a function of one variable r so it is naturally to 
reconstruct a potential by a phase shift given on a certain one-dimensional 
submanifold of (!, k)-plane. The problern is weil known and investigated in 
two important special cases: for the potentials given for fixed orbital mo­
mentum l (8(k) = 8z(k)) and for the potentials given for fixed energy (f.i. 
8(1) = 81(1)). Geometrically these cases correspond to rays issuing from ori­
gin ofthe (I, k)-plane and parallel to the axes. At the sametime there are very 
few results concerning the potential reconstruction by phase shifts given on 
another one-dimensional manifolds and all of them are obtained in the frame­
work of the WKB or generalized WKB approaches (Vasilevsky ancl Zhirnov 
(1977), Bogdanov and Demkov (1982), Abramov (1984), Chadan and Sabatier 
(1977, 1989)). The theoretical analysis of the problern is very difficult because 
there are no generalization of the Gelfand-Levit an-Marchenko-Krein Theory 
for such situations. 

Our approach to the numerical investigation of these problems is based 
on the following Variable Phase Equation (Calogero (1967), Babikov (1968)): 

88(~:, r) = -k- 1 V(r)[cos(8(l, k, r))jz(kr)- sin(8(l, k, r))nz(krW, (5) 

where 

8(1, k, 0) = 0, lim 8(/, k, r) = 8(1, k), 
r-+C 

(6) 

and 

(7) 

are Bessel-Ricatti functions. 
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Let us denote by 1i the nonlinear operator associating to a potential V ( r) 
corresponding phase shift 8(/, k). Then the inverse problern can be considered 
as a nonlinear equation 

1i(V) = 8 (8) 

with respect to the unknown potential V(r). 

3 Continuous Analogy of Newton Method 

First we describe the Continuous Analogy of Newton Method (CANM, Ga­
vurin (1958),Zidkov and Puzynin (1967)). 

Let H be a real or cornplex Hilbert space, L(H) - the space of linear 
operators in H, t.p : H ---'> H - a nonlinear operator. The following nonlinear 
equation is considered: 

t.p(x) = 0 . (9) 

Denote by x0 an initial approxirnation to the solution ofthe (1), by t.p'(x)- the 
Frechet derivative of the operator t.p and by t.p11 (x) - the Gateaux derivative 
of the operator t.p1 ( x), i .e. t.p 11 ( x) for fixed x is a linear operator frorn H to 
L(H), such that 

t.p1(x + ~)- t.p1(x) = t.p11 (x)~ + TJ, and I!TJIIII~II- 1 E 0, for ~-+ 0 

N ow let us consider the following Cauchy problerns in H: 

x'(t) = -t.p'-\x(t))t.p(x(t)), x(O) = xo . (10) 

For the problern the following convergence theorern holds. 
Theorem 1. ( Gavurin (1958)) Jf there exists a positive nurnber r such 

that the operators t.p1(x), t.p1 - 1 (x) and t.p 11 (x) exist in any point of the ball 
B = {x; llx- xoll :S riii.P(xo)ll}, t.p11 (x) is bounded in a neighborhood of every 
point of B, and for every x E B 

Then fort E (0, +oo) there exists a solution x(t) of the problern {2), x(t) E B 
for alt t E (0, +oo ), 

lirn x(t) = x* 
tE+oo 

and x* is the solution of the problern (1). 

(11) 
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4 The Frechet Derivative Operator 4>'(V) 

So the principal point for solving (8) by means of CANM is the inversion of 
the operator cp'(V). The last one can be simply obtained: 

00 

(cp'(V)~)(l, k) = J K(l, k, t)~(t)dt , (12) 

0 

where 

00 

K(l,k,t) = -B(l,k,t)exp[j V(s)A(l,k,s)ds] , (13) 

t 

A(l, k, r) = k- 1[sin(26(l, k, r))(j[(kr)- nl{kr))+ 

+ cos(26(/, k, r))il(kr)n,(kr)] , (14) 

B(l, k, r) = k- 1 [cos(6(l, k, r))j,(kr)- sin(6(l, k, r))n,(krW (15) 

Theinversion of the operator (12) is in factaproblern of solving the Fredholm 
integral equation offirst kind. The last one is an ill-posed problern and needs 
some regularization. In (Vizner, Zhidkov and Lelek (1968)) the algorithm 
using Tikhonov regularization at every step of the N ewtonian itera.tions was 
constructed in the particular case of the problem, when phase shift is given 
for zero orbital momentum (see also Vizner et a.l. (1978)). However such 
algorithm is unstable a.nd has low accuracy. 

Note. Foranother applications of CANM we refer to Vinitsky et al. (1990), 
Puzynin et al. (1993). 

5 Continuous Analogy of Newton Method with the 
Simultaneous Inversion of the Frechet Derivative 

Now our aim is to consider a continuous Newton method with the simul­
taneaus calculation of reciprocal to the operator ip1 ( x). Let us consider the 
following system: 

{ 1p(x) = 0 
IP'(x)Y- E = 0 , 

(16) 

where Y E L(H) and Eis the identity operator. Let Yo be some approxima­
tion to IP'(xo)- 1 and pisapositive number. 

Let us consider the following Cauchy problem: 
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{ 
x'(t) = -Y(t)<p(x(t)) 
Y'(t) = -p2 (('P'(x(t))*<p'(x(t))Y(t) + Y(t)<p'(x(t))(<p'(x(t)))*)+ (17) 
+2p2 ( <p1 ( x(t)))* 

x(O) = xo, Y(O) = Yo . 

Let us assume that the following condition holds. 
Condition A. There exist r > 0 and f > 0 such that 
1) Frechit derivative <p1 ( x) and Gateaux derivative <p11 ( x) exist zn 

B = B(xo, rii'P(xo)ll), rnoreover 

II'P"IIr = sup sup II('P"(x)eiiL(H) < oo , 
xEB €EH, 11€11=1 

2) for any x E B the operator ( <p'* ( x)) is invertible and 

3) the following inequality holds 

0 < max{IIYoll. II'P'*- 1 IIr} 
1- max{II'P'(xo)Yo- Eil, c} < r · 

(18) 

Denote 

II'PIIr = sup II'P(x)ll 
xEB 

II'P"IIr II'PIIr 
2c 

(19) 

The following theorem establishes the convergence of the method. 
Theorem 2. (Airapetyan and Puzynin (1996)) If the Condition A 

holds, then for every p > Po 
1} the solution (x(t), Y(t)) of the problern (4) exists fort E [0, +oo) and 

x(t) E B(xo, rii'P(xo)ll) , (20) 

II'P'(x(t))Y(t)- Eil :S max{II'P'(xo)Yo- Eil, c} ; (21) 

2} there exists 

lim x(t) = x* 
tE+oo 

and x* is the solution of the problern ( 1). 
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6 An Inversion of the Operator 4.>'( 0) 

So for the numerical solving of the inverse problern by means of the described 
method we must invert <P'(V) only in the initial approximation point V0 (r). 
As an initial approximation we use zero potential: V0 (r) = 0. So we have to 
solve the following Fredholm equation of first kind: 

00 

(<P'(o)e)(l, k) = -~ j j[(kr)e(r)dr = g(l, k) (22) 
0 

In the case I= 0, g = g(k), k E [0, C) the operator <P'(O) is very simple: 

00 

(<P'(O)O(k) = -~ j sin2(kr)e(1·)dr (23) 
0 

and can be easy inversed by means of the Fourier sin-trasformation: 

00 

(<P'(or 1g)(r) = 27r J cos(2kr)g(k)kdk . (24) 
0 

Now our goal is to inverse <P'(O) for g(l, k) given on more general subset. Let 
us denote 

00 

17(k) = j sin(kr)e(r)rdr . 

0 

From the recursion formulas for the Bessel-Ricatty functions 

d 21 + 1 
-d z1(x) = --z1(x)- Zl-l(x) l = 1, 2, ... , 

X X 

l 
Zl+l(x) = z1-1(x)- -z1(x) l = 1, 2, ... 

X 

we get the following relations: 

d 
dk [kg(O, k)] = -7](2k) , 

d 2 1-2 

dk [kg(l, k)] + yg(l, k) = 2 L ( -1)m(2l- 2m- 1)g(l- m- 1, k)+ 
m=O 

+2( -1)1+1 g(O, k) + ( -1)1+17J(2k) l = 1, 2, .... 

Therefore 

(25) 

d 
dk [k(g(l, k) + g(l + 1, k)]- a1[k(g(l, k) + g(l + 1, k)] = (ß1- a1)g(l + 1, k) , 
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d 
dk[k(g(l, k) + g(l + 1, k)]- ßz[k(g(l, k) + g(l + 1, k)] = (a 1 - ß1)g(l, k) , 

where 

ao = 2, 
• ( l + 1 )(21- 1) 

az = 2 1 , ßo = -2, 
2 

ßz =- (l + 1) 

So we obtain the following recursions: 

k 

+(ßz-az)k"'1- 1js-"'1g(l+1,s)ds-g(l+1,k), (26) 

a 

g(l + 1, k) = a1-ß1 [g(l, a) + g(l + 1, a)]kßz- 1+ 

k 

+(az-ßz)kßz- 1 j s-ßzg(l,s)ds-g(l,k) (27) 

a 

Now let the two finite sequences of nonnegative numbers be given: the first 

one { /1, i2, ... , IN} consists of integers, and the second one { a0, a1, ... , aN_ t} 
of real numbers, where ao = 0. Denote by IN a finite set of closed intervals 
on the ( l, k )-plane: 

N-1 
IN= u {(l,k);l = lj,aj-1 ~ k ~ aj}u{(/N,k:);aN-1 ~ k < oo}. (28) 

j=l 

Definition 1. We say that the system IN satisfies a "Staircase Condition" 
if there exist integers 0 = n1 < n2 < ... < nm < N such that for every i 
from 1 to m the following conditions hold 

a) llHl- lj I = 1 for j = ni + 1, ni + 2, ... , ni+l - 1 , 
b) no less than one from the numbers lni, ln,+1, ... , lni-t -1 equal to zero. 

From (26) and (27) the following lemma immediatly follows. 

Lemma 1. Let a continuous function g(l, k) = cf>'(O)~ be given on a set 
of intervals IN satisfying the "Staircase Condition .,_ Then the corresponding 
function g(O, k) is univalently determined on [0, <::x:J) by recursion formulas 
(26) and (27). 

From Lemma 1 the recursion formula for the inversion of the operator 
cf>'(O) can be easy obta.ined for every set of intervals satisfying the "Staircase 
Condition". 
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7 Statement of the Problem and Numerical Example 

Thus, now we can formulate the statement ofthe problern to which suggested 
Numerical Method could be applied. 

Statement of the Problem. Ta reconstruct the potential by means of 
the phase shifi given an the sei of the intervals satisfying the "Staircase Con­
dition ". 

For this problern there are no theorems establishing its well-posedness, so 
we are able only to examine it numerically. Let a phase shift 8(1, k) be given 
on the set 

l2 = {(l,k);O:::; k:::; al}U{(O,k);a1:::; k:::; oo} . (29) 

Then from the formulas of Sect.6 we obtain the following relation: 

(ct.r\o)g) = 1r(g(O, a) + g(l, a))[(ar- 1 - ~a- 1 r-3 ) sin(2ar) + r- 2 cos(2ar)]+ 

oo a 

+27r j g(O, k) cos(2rk)kdk- 21r j g(l, k) x [(k- 2k- 1r- 2 ) cos(2rk)-

a 0 

(30) 

Then using this inversion formula for initial approximation we apply the 
algorithm described in Sect.5. Below we bring some pictures illustrating the 

~~0°~~~f:j 1 0.01 

0 0.005 
-1 
-2 0 

=~ -0.005 

0 2 4 6 8 10 

0.600 4~ OA ~ 
0.2 1 

0 0 
-1 

-~2 2 
-0.4 -3 -0.6 -4 

0 2 4 0 2 4 

Fig. 1. In upper row the first figure displays Vn and second one - 8o, in lower row 
the first figure displays 81 and second one - Vr 

results of the numerical calculations based on this method. Westart from the 



96 Ruhen G. Airapetyan, Igor V. Puzynin, and Eugeni P. Zhidkov 

known potential Vn(r) on [0,10], then solve the direct problern and obtain 

phase shifts 8a(k) on [5,10] and 81 (k) on [0,5], and finally reconstruct the 
potential V,.(r) on [0,10]. 

The results of nurnerical investigation show that the considered problern 

can be nurnerically solved with high accuracy and so such statement of a 

problem is reasonable. As seerns to us, the interesting problern now is to 

prove the corresponding well-posedness theorern. 
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Abstract. The modified Newton-Sahatier method is extended to the inverse scat­
tering problern for coupled channels at fixed energy. The coupled Schrödinger equa­
tions are assumed to depend on a potential matrix which couples the channels. This 
potential matrix is taken as independent on the angular coordinates of the relative 
motion. In order to test the inversion method it is applied to analytic S'-matrices 
corresponding to potential matrices consisting of square well potentials. The scat­
tered particles can be neutral or charged. In the latter case the S'-matrix with the 
asymptotic Coulomb potential is transformed to the S'-matrix with an asymptotic 
constant potential and then the inverse scattering problern for neutral particles is 
solved. 

1 Introduction 

The Inverse Scattering Problem (ISP) in quantum mechanics means the de­
termination of the potential in the Schrödinger equation from the S-matrix. 
For elastic scattering the ISP at fixed energy was first solved by 1. 2 and 
3 investigated this method in great detail which is named Newton-Sahatier 
method today. An extension of the work was given by 4 for practical appli­
cations by introducing the modified Newton method. This method assumes 
that the potential is known from a certain radius on up to infinity. Thus, the 
potential is unknown only in a finite interval. If one considers neutral par­
ticles for example, the potential vanishes from a certain radius. For charged 
particles it is the Coulomb potential. The Newton-Sahatier method and other 
inversion methods at fixed energy are reviewed in monographies ( Cha.dan and 
Sabatier 1989, Newton 1982, Zakhariev and Suzko 1990). 

In this paper we extend the modified Newton-Sahatier method from the 
problern of elastic scattering to the case of inelastic scattering at fixed energy. 
For solving this problem we assume that the channels are coupled by a poten­
tial matrix which does not depend on the angular coordinates of the relative 
motion. In section 2 we formulate the ISP for coupled channels. In section 
3 we solve the ISP with the modified Newton-Sahatier method by using the 
S-matrix for a fixed energy. The special case of charged particles is reduced to 
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the case of neutral particles via a transformation given for elastic scattering 
by 7. Finally, in section 4 the new method is applied to potential matrices 
consisting of square well potentials which allow an analytical calculation of 
the S-matrix. 

2 The ISP for coupled channels 

We solve the ISP for a. particular coupled channel problem. We assume that 
the Hamiltonian describing the scattering system of two colliding pa.rticles is 
given by 

H = T(r) + h(€) + W(r,€). (1) 

Here, T denotes the relative kinetic energy operator and h the Hamiltonian of 
the internal states of the two scattering partners. The interaction operator W 
between the relative and the intrinsic motion depends on the relative radial 
coordinate r and the intrinsic Coordinates e. With this Special choice, only 
monopale transitions can be described. 

Due to this ansatz, the wavefunction of the system factorizes as 

(2) 

with R~( r) being the radial wavefunction, Ylm describing the orbital motion 
and Xa(€) solving the eigenvalue equation for the intrinsic motion: 

h(€)Xa(€) = caXa(€). (3) 

The eigenvalues c01 are the intrinsic excitation energies. 
Using the Schrödinger equation Hl/f = Elf/ and introducing the potential 

matrix Vaß =< Xa IWIXß >, we get the coupled equations for the radial 
wavefunctions: 

The total number of channels is denoted by N. The reduced mass J-t is inde­
pendent of the channel a, as we do not consider transfer reactions. Because 
of our special choice of the interaction W, the potential matrix V does not 
depend on the quantum number .e of the orbital angular momentum of rel­
ative motion which means that it does not couple the orbital and intrinsic 
motions. 

Equation ( 4) is a set of N linear homogeneaus equations for the radial 
functions R~n. Thus, we can write the solutions of this system a.s vectors 
with N components: 
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1Jin(1) = (Rfn(1·), R~n(1), ... , R~n(1)), with n = 1, 2, ... N. (5) 

These solutions are degenerate in the total energy E. For every channel n we 

have N linearly independent solutions. We will enumerate these solutions by 

the additional index n. 
The ISP at fixed energy now consists of the calculation of the potential 

matrix Vaß(l) from the asymptotic radial solutions which depend on the S­

matrix s;ß. In order to solve this problern one needs the full matrix s;ß 
(n, ß = 1, 2, ... , N) as function of the quantum number R of angular momen­

tum as input. 

3 The modified Newton-Sahatier method 
for coupled channels 

By introducing dimensionless coordinates and some abbreviations: 

k f2iJf e ( ) e ( ) r T ( ) _ V aß (I) 
p = I= V 71' tfian p = pRan I ' G aß p - E ' 

we can rewrite equation (4): 

N 

L D~ß(P)tf!~n(P) = f(f + 1)tf!~n(P) 
ß=l 

with the differential operator matrix given by: 

D~ß(p) = P2 { [dd:2 + ~a] baß- Uaß(P)}, 

where Ea = E- Ea is the energy in channel n. 

(6) 

(7) 

(8) 

The first step in solving the ISP with the Newton-Sahatier method is 

to choose a reference potential matrix with U~ß(p) = U3a(p). The regular 

solutions tp~l" (p) of the coupled channel problem with this reference potential 

matrix must be known: 

N 

L D~ß(p)tpß~(p) = R(R + 1)tp~~l(p) (9) 
ß=l 

with the reference differential operator 

(10) 

Next, an ansatz for the yet unknown wavefunctions is made: 

(11) 
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This is a generalization of the Povzner-Levit an representation to coupled 
channels (Chadan and Sabatier 1989). In this equation, the coupling between 
the different channels a and ß is introduced by the kernelKo:ß· The potential 
matrix in terms of the kernel is ohtained, if the kernel is a solution of the 
partial differential equations 

N N 
""'DU ( )YUUo( ') ""'DUo( ')YUUo( ') L..t o:ß p \ßl p, p = L..t lß p \o:ß p, p (12) 
ß=l ß=l 

with the houndary conclitions: 

K~fj0 (p, p' = 0) = 0. (13) 

Under these conditions it can he shown that the potential matrix is given hy 

d yUUo( ) 
U ( ) - uo ( ) 2 \o:ß p, p 

o:ß p - o:ß p - --
p dp p 

(14) 

A solution ofthe kernel in terms ofthe wavefunctions r.p and r.p0 can he written 
with yet unknown coefficients c~n': 

oo N 

K~fj0 (p, p') = L L C~n''P~n(p)r.p~~~(p'). (15) 
l=O n,n'=l 

The kernel fulfills the ahove conditions (12) and (13). Inserting the kernel 
into equation (11) it is possible to calculate the coefficients c~n' and the 
wavefunctions r.p;n ancl then the potential matrix ( 14). If we extencl the usual 
Newton-Sahatier method to coupled channels, the coefficients c~", can he 
calculated hy using the known asymptotic hehaviour of the wavefunctions 
r.p;n depending on the 5-matrix. In this paper we apply the modified Newton­
Sahatier method which assumes that the potential matrix U o:ß is known from 
some radius Po an. In this case the wavefunctions r.p;n are known for p > 
p0 by their dependence through the S-matrix and the coefficients c~n' can 
he calculatecl by solving equation (11) for p > p0 . The modified Newton­
Sahatier method yields an unique solution of the ISP in the dass of potentials 
generated hy the kernel (15). 

3.1 Scattering of neutral particles 

For neutral particles with short range interaction the potential matrix van­
ishes from a certain radial distance: Uo:ß(P > po) = 0. In this case the simplest 
choice of the reference potential matrix U 0 is zero: U2ß(p) = 0. Then, the 
regular reference solutions are: 

(16) 
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with k; = Ea/ E. 
The wavefunction <p in channel a is composed of a superposition of the 

degenerate solutions Tfxn (p) in channel a with yet unknown coefficients A;,n: 

N 

'P~n(P) = L pT~n'(p)A~'n· (17) 
n'=l 

The solutions Tfm(P) are asymptotically determined by the given S-matrix: 

(18) 

where ht are the spherical Hankel functions. By introducing the wavefunc­
tions (16) and (17) tagether with the kernel (15) in the Povzner-Levitan 
representation (11) we obtain the set of coupled inhomogeneaus equations 

(19) 

with 

, r 
L~ 1 (p) = Jo je(knp')jl'(knp')dp', 

N 

b~n' = L: A~n"c~"n'· 
n 11 =1 

(20) 

In order to get a set of finite coupled equations, we Iimit the summa.tion over 
f' to fmax· The effect of this Iimitation will be discussed in the examples in 
section 4. 

The known quantities in equation (19) are the reference solutions T 01 and 
the matrix L. The solutions T'- are only known in the outer region, where 
they depend on the S-matrix as given in equation (18). Further unknown 
quantities are the coefficients A and b. We will now use equation (19) two 
times to calculate these quantities. 

In the first step, we sol ve equation ( 19) at two points Pt, P2 > Po in the 
outer region. We then have 2 X N X N x ( fmax + 1) equations for the calculation 
of the coefficients A;n' and b;n' with the solutions Tl depending on the S­
ma.trix (18). In the second step we use these coefficients and solve equation 
(19) at discrete points Pi in the inner region 0 < Pi < Po to get the solutions 
T~n (Pi). We need to solve N x N x ( t'max + 1) equations at every radius Pi. 

Now, knowing the coefficients and the wavefunctions, we can calc.ulate the 
kernel (15) and the potential matrix (14). Thus, the ISP at fixed energy for 
the inelastic scattering of neutral particles is solved. 
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3.2 Scattering of charged particles 

The asymptotic solutions for charged particles are given m terms of the 
Coulomb functions 

(21) 

with 

(22) 

where Gt, Ft are the irregular and regular Coulomb functions, respectively, 
and a; are the Coulomb phases (Satchler 1983): 

a; = argT(C + 1 + iTJa), 
ZpZte 2 p 

TJa= fi2 kka. 

Zpe and Zte are the projectile and target charges, respectively. 

(23) 

Or------1---f---....,.......------i 
PB 

o~------~-U~a~IP~s_)~--~ 
PB 

0 0 
p p 

Fig. 1. The left diagram shows a diagonal element of the potential matrices Uaa 
(Real part: -, Imaginary part: · · ·) and U/:a (Real part:-- -, Imaginary part: · · ·), 
the right diagram gives an off-diagonal element. PB is the transformation radius. 

We could now choose the reference potential as a Coulomb potential and 
solve the ISP agairr as described above. We would get coupled equations of the 
type (19) where the solutions Tl are ofthe form (21). However, the numerical 
calculation with Coulomb functions is much more time consuming than the 
calculation with spherical Hankel functions. Thus, we consider a transforma­
tion of the S-matrix from an asymptotic Coulomb potential to an asymptotic 
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constant potential. The procedure is an extension of the method described 
by 7 for the elastic scattering of charged particles to inelastic scattering. 

The idea of the transformation can be seen in fig. 1. The wanted potential 
matrix (full curve) with an asymptotic Coulomb behaviour has the form 

{ 
Uaß(P) 

Uaß(P) = 0 ZpZte 2 k 
aß pE 

P :S Po, 

P >PO· 
(24) 

We transform the S-matrix belonging to this potential matrix to another 
S-matrix of a potential matrix which has asymptotically constant elements 

(PB >Po) 

UB ( ) _ , ZpZte 2k 
aß p - Uaß E 

PB 
for p >PB, (25) 

and is identical to U aß (p) in the inner region: 

(26) 

The new S-matrix sB describes the samepotential matrix for p < PB as the 
original S-matrix. 

The Schrödinger equations for the outer region of the Coulomb potential 
(24) are given by 

(~~ _ f(R + 1) k2 _ ZvZte 2 k) Tl ( ) = O 
d 2 P 2 + a E an P · p p p p 

(27) 

Their solutions are of the form (21 ). The Schrödinger equations for the outer 
region of the constant potential (25) are 

(~~ _ R(C + 1) (kB)2) TlB( ) = O 
d 2 P 2 + a an P 

p p p 

with the new notations 

(kB)2 = EB- Ea 
a E ' 

EB = E _ ZpZte 2k 

PB 

The solutions of (28) can be written in a form similar to equation (18): 

(28) 

(29) 

For the transformation of the S-matrix s;n --+ s;~, we use the continuity of 
the wavefunctions and their derivatives at p = PB. The new wavefunctions 
(30) can then be used as input for the solution of the ISP for neutral particles. 
By transforming the S-matrix we have reduced the ISP for charged particles 
to the ISP for neutral particles. This transformation works for all potentials, 
to which the asymptotic solutions are known. 
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4 Application to coupled square well potentials 

We now apply our method to the case of coupled square weil potentials. For 
this problem, analytic formulas for the S-matrix were derived by 9 providing 
us with exact input data for the inversion procedure. For simplicity we restriet 
ourselves to two channels. 

As a first application we consider a coupled square weil potential for 
neutral particles. The input S-matrix was calculatecl for the potential ma.trix: 

{ 
( -6-~ 4i -4-~ 3i) MeV 

V(r) = 

0 MeV 

r:::; 4/m, 
(31) 

r > 4fm. 

The excitation energy in the first channel is set to zero: c: 1 = OM e V, in 
the second cha.nnel c: 2 = 5M e V. The reduced mass is chosen to model the 
scattering of a neutron on a 12C-nucleus: Jl = 859.85MeVjc2 . For the calcu­
lation of the spectral coefficients A and b in equation (19) we take the points 
r1 = 4.1/m and r 2 = 4.2/m. 

Fig. 2 shows the inverted potential ma.trix at three different energies. The 
diagrams at the top and bottarn of fig. 2 are the diagonal elements V11 and 
V22 , respectively. The two diagrams in the middle correspond to the coupling 
potentials V12 and V21 . The left hand side shows the real part, the right one 
the imaginary part of the potential. 

The energies are E = 250,150 and 50MeV for the full, dashed, and dot­
ted curves, respectively. The original potential is reproduced best for the 
highest energy, since more S-matrix elements can be taken into account with 
increasing energy. The following cut-off angular momenta Cmax were chosen 
in equation (19): Cmax = 15, 12,7 for E = 250,150 a.nd 50MeV, respectively. 

As can be seen from equa.tions ( 14) and ( 15), the potentials are calculated 
with a finite Superposition of wavefunctions. The greater Cmax is chosen, the 
more wavefunctions contribute to the potential and the a.rising oscillations 
are diminished. This effect is best seen at the discontinuity at r = ro = 4/m, 
which is especially difficult to reproduce. Thus, we expect smoother results, 
when continuous potentials are inverted. As ca.n be seen from equa.tion (14), 
the inverted potential matrix has a singularity a.t the origin r = 0. This pole 
will arise also with other potentials. 

The number of oscilla.tions in the potential matrix depends on the en­
ergy. ForE= 50, 150 a.nd 250M eV we have three, five, and seven maxima, 
respecti vely. 
At fixecl energy and different choices of Cmax the number of oscilla.tions re­
mains constant (see fig. 4). 

Although the symmetry condition U aß = Ußo: is not explicitly used in the 
method, the numerical procedure automa.tically provides the symmetry with 
high accuracy. 
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In the second case we assume a potential matrix for two channels with 
charged particles: 

V( ) = { ( -6-~ 4i -4-~ 3i) MeV 
r 12e2 

MeV 
r 

r ~ 5/m, 
(32) 

r > 5fm. 

The excitation energies are c1 = OM eV and c2 = 5M eV. The charge numbers 
and the reduced mass are chosen to model the scattering system ~He + 
~ 2 C:J.l = 2794.50MeV/c2 • 

The S-matrix corresponding to the asymptotic Coulomb potential is first 
transformed to the S-matrix of a constant asymptotic potential with rB = 
6.5fm. The radii for the calculation of the spectral coefficients A and b are 
r1 = 6.5fm and r2 = 6.6fm. 

Fig. 3 shows the inverted potential matrix at the same incident energies 
as in the first application. The following cut-off angular momenta fmax were 
chosen in equation (19): fmax = 30, 25,16 for E = 250,150 and 50MeV, 
respectively. 

Let us now discuss the optimum choice of Rmax. Fig. 4 shows the inverted 
potential matrix for three different choices of Rmax: emax = 27 ( dotted curve), 
28 (dashed curve), and 35 (full curve). While the results for Rmax = 27 os­
cillate strongly, the potential matrix for the Rmax = 28 calculation already 
reproduces the original potential very good. This behaviour does not change 
significantly if Rmax is further raised, as can be seen by comparisons with the 
Rmax = 35 calculation. It means, that a further improvement of the results can 
only be obtained by raising the numerical accuracy of the inversion program. 
A more detailed discussion of the optimization of the inversion procedures 
can be found in the diploma thesis of 10. 

5 Summary and conclusions 

We extended the modified Newton-Sahatier method from the one channel 
case to the case of N coupled channels. Due to the special choice of the 
Hamiltonian, the method is restricted to monopole transitions induced by 
the radial motion. 

We need the full S-matrix as input data. This confronts us with the funda­
mental problernthat the full S-matrix is usually not known from experimental 
data. In the experiment the particles are scattered in their ground state. 

Thus, only one column of the S-matrix can be measured, describing the 
excitation from this state. In the case of only two channels and no absorption 
one might use the unitary condition for the S-matrix to calculate the missing 
matrix elements. The inversion method was derived for the scattering of 
neutral particles. Charged particles are treated by a transformation of the 
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S-matrix from an asymptotic Coulomb potential to an asymptotic constant 
potential. Then the transformed S-matrix serves as input for the inversion 
procedure for neutral particles. 

The method was applied to an analytic S-matrix for the case of two 
coupled channels with a square well potential matrix for neutral and charged 
particles. For this case a good agreement with the initial potential matrix 
was found. Applications to more realistic potentials are in progress. 

If we reconsider our procedure, we detect a relation of our method to the 
one of 11 who gave a solution of the ISP for coupled channels at fixed total 
angular momentum. In the case of Cox the S-matrix must be known as a 
function of the energy, whereas in the present method the S-matrix must 
be known as a function of the angular momentum of the relative motion. 
Therefore, in our case the angular momentum of relative motion at fixed 
total energy plays the same role as the energy at fixed total angular momen­
tum in the method of Cox, and spans the space of functions in which the 
potential matrix is expanded. Hence, the resulting potential matrix can not 
depend on the angular momentum of the relative motion in our method and 
is not allowed to couple the orbital motion and the intrinsic dynamics of the 
scattered particles. In order to solve the ISP at fixed energy with a coupling 
between the orbital relative and the intrinsic motions, new ideas are needed. 
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1 Introduction 

The iterative-perturbative (IP) algorithm allows real or complex, central and 
spin-orbit potentials tobe determined by inversion from the elastic S-matrix 
for both spin 0 and spin-1/2 scattering [1]. The procedure can also be applied 
to incomplete data sets, to data sets for a range of energies ( "mixed case in­
version") and to data sets containing experimental errors [2], [3]. Simple reg­
ularisation techniques are used to obtain the smoothest possible potentials 
where the data sets are incomplete. Although the method does not represent 
a rigorous mathematical solution of the inverse scattering problem, a con­
siderable improvement over model independent fitting methods is obtained 
by using the Born approximation to obtain a rapidly convergent and compu­
tationally efficient solution. Similar techniques have been used by Kukulin, 
[4]. 

The IP procedure is easily further generalised for application to a wide 
range of cases, for example: 

Parity-dependent potentials can be established, which are necessary for 
a satisfactory description of p + o: scattering for narrow energy ranges, 
[2]. 
Potentials have been also determined from bound and resonant state 
energies for 3 He + o:, [5]. 
A recent extension of the procedure allows the determination of energy 
dependent potentials using an energy-independent form for the potential 
geometry, [6]. 

The last extension is the central subject of this report. It is particularly 
necessary for the inversion of phase shifts just above the inelastic threshold, 
where the imaginary potential has a strong energy dependence. In many cases 
a linear energy dependence in the real components provides both a sufficient 
and highly economical representation of the data over a wide energy range. 

In this presentation, specific examples are presented to illustrat.e the ap­
plication and limitations of this procedure for energy dependent inversion: 
Firstly we present a determination of p + o: potentials from empirical 5-
matrices at energies both above and below the reaction threshold. These 
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potentials are compared with potentials determined from RGM phase shifts 
for energies up to ,...., 65 MeV. (The calculations are described in detail in a 
preprint, [6].) In the second case, an energy dependent potential is determined 
to reproduce a + 160 RG M phase shifts and bound states. 

2 The IP method for energy-dependent inversion 

In the most general implementation of the IP procedure, bound state and 
resonance energies, are fitted simultaneously with phase shifts, permitting 
a consistent representation of bound and scattering states. The method is 
outlined in greater detail in a recent preprint, [6] and only abrief summary 
is given below. 

Starting with a target set of N,. complex 5-matrix elements and Nb bound 
or resonant state energies, En, the inversion minimises, 

(1) 

The index, "' represent the 1-value, the j-value for spins > 0 and the energy 
in mixed case inversion. The quantities w,. and W are weighting factors, [6], 
although the w,. might be determined from uncertainties generated in the 
phase shift fitting, [3]. The superscripts "tar" and "inv" refer to quantities 
either in the target data or determined from the inversion potential. The func­
tions, <Pr and </J2 represent the two bound or resonant state wavefunctions, 
determined respectively for radial regions inside and outside the matehing 
radius, Rm [5]. 

The procedure begins with a suitable starting reference potential, vsrp(r). 
In most cases a reasonable approximation is required only for the real central 
component. The potential determined by inversion may have imaginary and 
spin-orbit terms, for which each component, c, may take the parity dependent 
form, vl ( r) + ( -1 )1 v2 ( r). Energy dependence is introduced by expressing the 
components as, Vc(r, E)) = Uc(r)Fc(E), where, for vsrp(r), Fc(E) = 1 for all 
c. 

The value of rr2 obtained from ysrp( r) (initially, the quantities labelled 
inv in Eq. 1 are calculated from ysrp ( r)) is decreased by adding perturba­
tions separately to each component of ysrp(r). Theseperturbationsare linear 
Superpositions of suitable radial basis functions, Vc i ( r) and, optionally to es­
tablish energy dependence, a number of energy-dependent basis functions, 
fc;(E). The real components then have the form: 
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where ec; and Ac; are determined by inversion. The energy dependence in 

the imaginary components is chosen such that these components tend to zero 

at the inelastic threshold, i.e., 

(3) 

where p is a set positive value, and E;ef is a chosen reference energy. In all 

applications considered here, only the first term in each energy expansion is 

found necessary to reproduce the phase shift data satisfactorily. For the real 

components we use fc;(E) = E. 
For a single perturbation, ecdc;(E)Vcsrp(r), the approximate correction 

to S is given by, 

{)S" = (-iJi-Ccecd!ci(E")) { 00 vsrp(r)(u"(r))2 dr, (4) 
h k" Jo 

where Ce = 1 for the real central component and is suitably modified for the 

imaginary, spin-orbit or parity-dependent components, [6]. All other terms 

are as usually defined. A similar expression for 8S" can be derived for the 

radial perturbation, AciVc;(r), in which v:rP(r) is replaced by Vci(r) inside 

the integral and Aci, or AciFc(E), replaces ecdc;(E") outside. 
The correction to vsrp ( r) to fit the bound state energies is obt.ained by 

correcting the differences between the logarithmic derivatives of </J'l( Rm) and 

</J2(Rm), i.e. for the perturbation, ecdc;(E~rP)Vcsrp(r), we get, 

A similar expression is obtained for the radial perturbation, Ac;Fc(E)vc;(r). 
A least squares minimisation of CJ' 2 , combined with Eqs 4 and 5, then 

produces a set of linear equations. These equations are solved using singular 

value decomposition, which, by using a suitable tolerance parameter, guar­

antees stabilisation of the inversion. Since the inversion equations represent 

only a first order approximation, the complete procedure must be repeated as 

an iterative process, with Vinv(r, E) replacing vsrp(r) in the above equations. 

However the method generally converges quickly, with close to the optimum 

CJ' 2 often obtained after two or three iterations. The complete IP procedure 

has been implemented in the code IMAGO. 
The above method is capable of further generalisation. The scattering 

length at zero energy, atar, can also be fitted simultaneously with phase 

shifts in the above procedure. For a potential, vinv ( r), the s-wave Schrödinger 

equation for E = 0 is integrated to obtain the radial wave functions, uoo( r), 



Energy-Dependent Potentials Obtained by IP Inversion 115 

suitably normalised in the asymptotic region [7). An approximation for the 
change in the s-wave scattering length at zero energy, /5a, for a real central 
perturbation, Aci Fc(E = O)vci(r), is obtained similarly to Eqs. (4) and (5) 
as, [7), i.e., 

(6) 

In this case, a further term, Wa(atar - ainv) 2 must now be added to 0'2 , 

where the weighting factor Wa establishes the relative accuracy to which the 
scattering length is reproduced. 

The complete method can be directly applied to cases of higher spins 
if coupling can be neglected. Furthermore, Kukulin et al [4] have applied a 
very similar procedure to obtain potentials by direct inversion from elastic 
cross-section and polarisation data. 

2.1 The uniqueness problern 

In any problern with incomplete data, the resultant potential cannot be 
uniquely defined. The introduction of parity dependence increases this prob­
lern, although the extra degrees of freedom are only justified if the resultant 
potentials are markedly smoother than the best fitting parity independent 
potential, [8). Regularisation is introduced into the IP procedure by restrict­
ing the radial basis used in the inversion and also by the use of singular 
value decomposition. The choice of the radial basis is then important, but 
the sensitivity of the solution to this choice is easily assessed by using dif­
ferent bases or a different choice of vsrp(r). Bessel functions, gaussians or 
harmonic oscillator functions used by Kukulin may represent the functions, 
Vi. 

The additional inclusion of energy dependence introduces further uncer­
tainties since we consider only one out of the many possible definitions of 
energy dependence. A more explicit form of non-locality might be more ap­
propriate. 

3 The p-4He potential up to rv 65 MeV 

Before applying energy dependent inversion directly to empirical phase shifts, 
we first present a test of the energy dependence of the potential geometry. 
This test case is based on RGM phase shifts, [9), which have a smooth energy 
dependence. Strong similarities between the RGM potentials and empirical 
potentials have been previously established at subthreshold energies, [10). In 
the present study, the inversion is based on "wide" energy bites, Ecen ± 1 
MeV, establishing potentials linearly dependent on energy for Ecen = 10, 
30 and 50 MeV. These potentials, evaluated at E = 0, are shown in Fig. 1. 
Clearly there is little energy dependence in the potential shape for all but the 
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insignificant spin-orbit V2 term. It is possibly of physical significance that the 

overall Vl/Vz pattern persists almost unchanged as the range of contributing 
l-values changes markedly. However the coefficients ~ci decrease in magnitude 

with Ecen, for both the central Vt and Vz terms, suggesting that non-linear 
terms in the energy-dependence are required to describe the complete energy 
range. In contrast, a similar analysis on the subthreshold empirical phase 

shifts confirms only the independence with energy of the potential shape and 
no predictions for a non-linear energy dependence can be deduced. 

Fig 1 
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Fig.l. For p + a, the real zero energy radial potentia.ls Uc(r) for the central and 
spin-orbit, Vi and V2 components obtained by inversion of RGM phase shifts over 
the energy bites, Ecen ± 1 MeV centred at the energies, Ecen = 10 MeV (solid lines ), 
Ecen = 30 MeV (dashed) and Ecen =50 MeV (dotted). 

For p + a at energies above the reaction threshold, energy dependent 

inversion has been applied to three phase shift analyses, described in detail 
in a recent preprint, (6]. Here we present only the potentials obtained from 

the S-matrices of Burzynski et al (11], covering the energy range from ,..._, 30 to 

,....,70 MeV. This data set then avoids contributions from the d3; 2 resonance, 

which is not single particle in nature. In these inversion calculations, complex 

and parity dependent potentials are established, linearly dependent on energy 

for real V(r). 
Three forms of energy dependence in the imaginary potential, i.e. p = 1, 

0.5 and 0, are used to give three inversion solutions, (1), (2) and (3) respec­
tively. The arg(S~nv) for these solutions are compared with the Burzynski 

arg(S,.) in Fig. 2 and the comparison for IS,.I is presented in Fig. 3. The em­
pirical data fluctuates considerably with energy so that, while the Burzynski 
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arg(S~~:) is well reproduced by the solutions, the values for ISI are reproduced 
well only for certain partial waves. 

Fig. 2 
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Fig. 2. For p + a above the inelastic threshold, arg( Szj) for l S 3 and g7 12 • The 
empirical values of Burzynski et al (solid dots) are compared with arg(Szj) for the 
three solutions described in the text, (1) solid lines, (2) dashed and (3) dotted. 

The real potentials for solutions (1) and (3), extrapolated to E = 0, i.e. 
V(r, E = 0) are shown in Fig. 4. This figure also includes two potentials 
(EF(1) and EF(2)) determined for subthreshold energies from the effective 
range phase shift parameterisation of Schwandt [12], and a potential deter­
mined by inversion of the complete tabulated energy range, 0 - 62 MeV, 
of the RGM phase shifts [9]. All these real components depend linearly on 
energy, and the parameters, 6, are listed in Table 1. 

The results presented in Fig. 4 and Table 1 reveal a remarkably consis­
tent description, in the radial and energy dependence of most real empirical 
components, despite the large extrapolation in E made for the higher energy 
inversions. The real p + a potential may then be considered well-established 
up to "' 70 MeV. The parity dependence found at subthreshold energies is 
still significant at higher energies, although the energy gradient for the cen­
tral V2(r) is notably larger than that of the centra.l V1 component. A good 
agreement is also found between the empirical and RGM potentials, particu­
larly for r > 3 fm, in the radial shape, depth and energy dependence, despite 
the simplicity of the single channel RGM. We conclude that many features 
in the empirical potential relate directly to the effects of antisymmetrisation. 
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Fig. 4. For p + a real potentials linearly dependent on energy, evaluated at E = 0 

(i.e. Uc(r)). The potentials are: solid line, RGM; long dashes, EF(l); dots, EF(2); 

dot-dash, Burzynski (1); and short dash, Burzynski (3). 
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The imaginary components of the three solutions for energies above the 
reaction threshold, are calculated for E;ef = 30 MeV and are shown in Fig. 5, 
evaluated at 30 MeV. These components aresmall in magnitude, but parity 
dependence is necessary to reproduce the phase shift data. However, due 
to the uncertainties in the empirical S-matrices, the exact radial form and 
energy dependence of the imaginary components cannot be well-determined. 
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Fig. 5. For p + a above the inelastic threshold, the imaginary potentials evaluated 
at E;ef = 30 MeV for the three solutions resulting from inversion of the Burzynski 
S-matrix, (I) solid lines, (2) dashed and (3) dotted. 

Table 1. The coefficients p (for cases above reaction threshold) and 6 in MeV-1 , 

for potentials linearly dependent on energy determined from RGM, empirical sub­
threshold phase shift parameterisations and from empirical S-matrices at energies 
above the inelastic threshold. 

S ar p 6 
Central VI Central V2 Spin-orbit VI Spin-orbit V2 

Effective range (I) - -0.0043 -0.0119 0.0032 0.0344 
Effective range (2) - -0.0045 -O.OI23 0.0089 -0.00039 

Burzynski (I) I -0.0054 -O.OI09 0.0002 -0.0028 
Burzynski (2) 0.5 -0.0053 -0.0109 0.0004 -0.0028 
Burzynski (3) 0.0 -0.0053 -0.0108 0.0005 -0.0028 

RGM - -0.0038 -0.0137 0.0024 -0.0086 
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4 a + 16 0 potentiallocal equivalent to RGM 

Here, as a preface to a wider analysis of empirical data for a-160, the IP pro­
cedure is applied to phase shifts and bound state energies obtained from single 
channel RGM calculations. Realphase shifts tabulated to 30 MeV (c.m.) and 
bound state energies for a-160 calculated using the single channel RGM with 
all exchange terms, have been provided by Tang, (private communication). 
This idealised data set provides a test of the energy dependent inversion for 
higher mass systems. 

An inversion of the bound and resonant state energies for the two lowest 
energy bands alone, ot and o-, yields successful results using a parity and 
energy independent potential. The resulting energy values are listed in the 
first lines Table 2. The addition of a V2 term Ieads to a decrease in (J'2 from 
0.39 to 0.107, corresponding to a improvement in the reproduction of the 
energies for some states. Little improvement in (J'2 is gained by the addition 
of energy dependence. 

Table 2. The bound and resonant state energies for the lowest energy bands ob­
tained from RGM theory and compared with corresponding values obtained by IP 
inversion both with and without parity dependence. 

l= 0 1 2 3 4 5 6 7 8 

RGM -4.72 1.26 -3.3 3.15 -0.06 6.8 5.2 12.75 11.65 

vl only -4.68 1.39 -3.32 3.25 -0.130 6.84 4.98 12.59 12.31 

V2 included -4.77 1.25 -3.29 3.16 0.063 6.81 5.14 12.71 11.66 

All data (Vi) -4.92 1.52 -3.70 3.36 -0.77 6.90 3.99 12.57 10.94 

Similar results are obtained from inversion of the complete data set, and a 
remarkable overall fit can be obtained without energy or parity dependence. 
In Fig 6, the resulting phase shifts are compared with the RGM values, show­
ing how well the overall energy dependence is predicted. The last line of Table 
2lists the bound/resonant state energies obtained with this new potential and 
shows a satisfactory fit to the oddfeven splitting of the resonances which is 
only slightly worse than that for the inversion of the bound/resonant state 
energies alone. However, only a slight improvement in the complete overallfit 
is found from the addition of a real v2 term and, again, virtually no further 
improvement is found by allowing energy dependence in the potential depth. 

Fixed energy inversion of the phase shifts is possible for a+160, and 
now a significantly lower value of (J'2 is obtained by including a v2 term. 
Potentials, determined for energies of 10, 20, and 30 MeV (c.m.), are shown 
in Fig. 7. The parity dependent potential obtained from inversion of only 
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Fig. 6 
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Fig.6. For a+16 0, arg(S!j) for l = 0- 6, comparing values calculated using the 
RGM (filled circles) with values obta.ined by energy and parity independent inver­
sion (solid lines). 

the bound and resonant state energies is also shown. The V1 component 
obtained from the fixed energy inversions is close in magnitude and depth 
to both the potential reproducing bound and resonant states only, as well as 
to the potential obtained by inversion of the complete data set (not shown). 
The fixed energy inversions show little energy dependence in the potential 
geometry of vl' although the volume integrals increase slightly with energy. 
The small V2 component is clearly less well de:fined, but signi:ficant changes 
are found in the geometry with increasing energy which will necessarily limit 
the accuracy of any mixed case inversion which does not accommodate this 
shape dependence. 

5 Summary and outlook 

We have presented the iterative perturbative inversion procedure in its most 
generalform for determining energy and parity dependent potentials by inver­
sion from both complex phase shifts and bound state energies. This method is 
a necessary extension ofmixed case inversion techniques previously presented, 
which incorporate a wide range of data in order to reduce the ambiguities 
arising from inversion of incomplete data sets. 
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Fig. 7 
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Fig. 7. For a+ 16 0, the real parity dependent potentials, V ( r) obtained by fixed 
energy inversion at the energies, E = 10 MeV (solid lines), E = 20 MeV (dashed 
lines) and E = 30 MeV (dotted lines) compared with that obtained by inversion 
from the bound and resonant states alone ( dash-dot lines). 

For the first time, inversion has established p + a potentials which de­
scribe the empirical complex phase shifts for a wide range of energies above 
the inelastic threshold. Combining these results with calculations for sub­
threshold energies, a consistent energy dependent potential is obtained for 
the energy range, 0 ,...,70 MeV. For a + 160 scattering, a good overall de­
scription of RGM phase shifts and bound state energies has been obtained 
with a local potential, without energy or parity dependence. However, an 
exact reproduction of the data requires inclusion of small energy dependent 
effects, which must include an energy dependence in the shape of the parity 
dependent term. 

In the future we believe that the generalised IP procedure offers many ad­
vantages to facilitate the comparison between theory and experiment. Many 
empirical data sets contain too few l-values to allow fixed energy inversion 
although energy dependent potentials may be necessary. New descriptions 
of energy dependence, or more direct prescriptions of non-locality, must also 
be explored and the IP method should permit an easy comparison between 
different energy-dependent descriptions. 
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Abstract. The notion of interacting elementary particles for low and medium en­

ergy nuclear physics is associated with definitions of potential operators which, 
inserted into a Lippmann-Schwinger equation, yield the scattering phase shifts and 

observables. In principle, this potential carries the rich substructure consisting of 
quarks and gluons and thus may be deduced from some microscopic model. In this 

spirit we propose a boson exchange potential from a nonlinear quantum field theory. 

Essentially, the meson propagators and form factors of conventional macleis are re­
placed by amplitudes derived from the clynamics of self-interacting mesons in terms 

of solitary fields. Contrary to deduction, we position the inversion approach. U sing 

Gel'fand-Levitan and Marchenko inversion we compute local, energy-inclependent 
potentials from experimental phase shifts for various partial waves. Both potential 

models give excellent results for on-shell NN scattering data. In the off-shell domain 

we study both potential models in (p, p-y) Bremsstrahlung, elastic nucleon-nucleus 

scattering and triton binding energy calculations. It remains surprising that for all 
observables the inversion and microscopic meson exchange potentials a.re equiva.­
lent in their reproduction of da.ta. Fina.lly, we Iook for a.nother rea.lm of elementary 
interactions where inversion and meson excha.nge moclels ca.n be appliecl with the 

hope to find more sensitivity to discern substructure clynamics. 

1 lntroduction 

In the last decade, the development of highly quantitative models for the 
nucleon-nucleon interaction was one of the major tasks of theoretical nu­
clear physicists. Based on Yukawa's pioneer work, potentials for NN forces 
mediated by the exchange of boson fields with masses below 1 Ge V were in­
vented and successfully applied to various problems in medium energy nuclear 
physics [1]. Despite of their remarkable ability to account for quantitative de­
tails of NN phenomenology, none of these models contains any reference to 
Quantum Chromodynamics QCD, which is believed tobe the underlying mi­
croscopic theory of the strong interaction. There are a number of models 
which explicitly refer to QCD [2), but so far all of them fail to describe the 
nucleon-nucleon interaction comparable well as the phenomenological boson 
exchange potentials. Thus the major shortcomings of today's nucleon-nucleon 
potential models are the empirical character of the boson-exchange potentials 
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which arises from phenomenological usage of form factors without stringent 
connections to QCD and on the other side the failure of QCD inspired models 
to provide a quantitative description of nucleon-nucleon scattering data. 

The goal of the Solitary Boson Exchange Potential, which will be de­
scribed in detail in section 3 is to interpolate between these extreme positions 
[1]. Characteristic features of QCD inspired potential models, namely their 
nonlinear character, are taken into account using a nonlinear expansion of 
the Klein-Gordon equation as equation of motion for the boson fields. On 
the other hand, the solutions of this equation, called solitary boson fields, are 
used in a boson exchange potential which is in great analogy to the Bonn-B 
potential [4] to obtain a quantitative description of NN data comparable weil 
as the phenomenological boson exchange potentials. It will turn out that the 
nonlinear character of the boson fields allows to substitute the phenomenolog­
ical form factors of the Bonn potential. Simultaneously, an empirical scaling 
law is found which relates all meson parameters, as expected in a model based 
Oll QCD. 

Contrary to the microscopic models, potentials obtained from quantum 
inversion were developed for various hadron-hadron interactions [5]. Using 
experimental phase shifts as input in the Gel'fand-Levitan and Marchenko 
inversion algorithm for the Sturm-Liouville equation yields local potential 
operators in coordinate space which are madel-independent and reproduce 
the experimental data by construction. 

As far as elastic NN data are concerned, inversiori potentials evidently pro­
vide a precise description of the NN interaction. It is a nontrivial question, 
however, whether this accuracy remains in the application of inversion poten­
tials to more complex problems. Since the scattering phase shifts, from which 
inversion potentials are obtained, only contain the on-shell information of the 
scattering amplitude, i. e. the absolute value of the incoming and outgoing 
nucleon momentum remains unchanged, it is questionable if such a potential 
can account for the description of reactions where the off-shell part of the 
t-matrix contributes. A sensitivity on details of the off-shell amplitude would 
provide the desired possibility to test possible effects of the substructure of 
potential models. In particular, we seek a signature in the data to confirm the 
assumptions which led to the Solitary-Boson-Exchange-Potential. To study 
this interesting point we apply boson exchange as weil as inversion poten­
tials to calculate the differential cross section for (p, PI) Bremsstrahlung and 
elastic nucleon-nucleus scattering as weil as the triton binding energy. The 
astanishing outcome implies that inversion and boson exchange potentials 
yield equivalent results. Even more surprising, an improvement of the de­
scription of the on-shell data enhances the accuracy describing the off-shell 
data. 

Before inversion and boson exchange potentials will be compared, we give 
a short reminder of the algorithms which are used to calculate inversion 
potentials from experimental phase shifts and show the typical structure of 
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boson exchange potentials outlining the basic ideas of our Solitary-Boson­
Exchange-Potential model. 

2 N ucleon-N ucleon Potentials from Inversion 

Contrary to the direct path to obtain a potential for NN scattering from some 
microscopic model, the algorithm of quantum inversion can be applied using 
experimental phase shifts as input (5]. Nowadays, the inversion techniques for 
nucleon-nucleon quantum scattering have evolved up to almost perfection for 
scattering data below pion production threshold. Numerically, input phase 
shifts can be reproduced for single and coupled channels with a precision of 
1/100 of a degree, which is much lower than the experimental uncertainty. 
This accuracy and the possibility to test the inversion potential 'online', i. e. 
inserting the potential into the scattering equation to reproduce the input 
phase shifts, makes them a reliable and easy-ta-handle tool for highly quan­
titative medium energy nuclear physics. Guided by this spirit, the utmost 
aim of quantum inversion is to provide the most simple operator to repro­
duce the scattering data. This paradigm, however, proscribes to include any 
momentum dependence and thus any non-locality in the potential since this 
would open a box full of ambiguities which can not be associated with the 
goal of simplicity. 

As a basis, the radial Schrödinger equation is assumed to be the relevant 
equation of motion for the two-particle system 

{ d2 e(e + 1) 2J-t } 2 
- dr2 + r 2 + h2 Ve(r) '1/Je(k, r) = k '1/Je(k, r), (1) 

where Ve ( r) is a local, energy-independent operator in coordinate space. Sub­
stituting 

() _f(l+1) 2J-tV.() qr- 2 + 2 er 
1' h 

and (2) 

one obtains the well-known Sturm-Liouville equation 

[- dd:2 + q(x)] y(x) = ,\y(x). (3) 

The scattering phase shifts enter as boundary conditions for the physical 
solutions of (1) which read 

lim '1/Je(k, r) = exp(i8e(k)) sin(kr- C1r + be(k)) 
r--HXJ 2 

(4) 

There are two equivalent inversion algorithms for the Sturm-Liouville equa­
tion, the Marchenko and the Gel'fand-Levitan inversion, which will be out­
lined in the next sections for the case of uncoupled channels. 
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2.1 Marchenko Inversion 

In the Marchenko inversion the experimental information enters via the S­
matrix, which is related to the scattering phase shifts by the simple relation 

St(k) = exp(2i8t(k)). (5) 

lnserting a rational representation of the S-matrix (5] into the integral equa­
tion for the input kernel 

1 j+oo 
Ft(r, t) =- 271" -oo hi(kr) [St(k)- 1] hi(kt)dk, (6) 

where hi(x) are the Riccati-Hankel functions, the Marchenko equation 

At(r, t) + Ft(r, t) + 100 At(r, s)Ft(s, t)ds = 0, (7) 

becomes an algebraic equation for the translation kernel At(r, t). The poten­
tial is obtained by taking the derivative 

d 
Vt(r) = -2 dr At(r, r). (8) 

2.2 Gel'fand-Levitan Inversion 

Instead of the S-matrix in the Gel'fand-Levitan inversion the Jost-matrix 
carries the experimental input. The latter is related to the S-matrix by 

S (k) = Ft(-k) 
l Ft(k) ' (9) 

and Ieads to the input kernel 

where it(x) are the Riccati-Bessel functions. A rational representation of the 
spectral density [5] again yields an algebraic form for the Gel'fand-Levitan 
equation 

Kt(r, t) + Gt(r, t) + lr Kt(r, s)Gt(s, t)ds = 0, 

and the desired potential is obtained from 

(11) 

(12) 
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2.3 Coupled Channel Inversion 

For coupled channels, i. e. transitions between states with different angular 

momentum f;, the Schrödinger equation ( 1) becomes a matrix equation. 

(13) 

where in the case of two coupled angular momentum the potential matrix 

reads 

The input and translation kernels of the previous sections and in particular 
the S~matrix now generalize to matrices. Since it is cumbersome for coupled 

channel situations to solve the Riemann~Hilbert Problem (9) numerically we 

will focus on the Marchenko inversion which does not include any serious dif­

ficulty for the general case of coupled channels. Defining the diagonal matrix 

which contains the Riccati~Hankel functions by 

( ht, (x) 0 ) 
H(x) = 

0 hi,(x) 

one gets as a generalization of (6) for the input kerne! 

1 J+oo NB 
F(r, t) = -- H(kr) [S(k)- 1] H(kt)dk + 2.::: H(k;r)N(k;)H(k;t), 

21f -00 i=l 

(14) 
where the matrix N(k;) contains the asymptotic normalizations of the wave 

functions for the bound states at (imaginary) momentum k;. The Marchenko 

fundamental equation (7) now reads 

A(r, t) + F(r, t) + 100 A(r, s)F(s, t)ds = 0, (15) 

and the potential matrix is obtained from 

d 
V(r) = -2 dr A(r, r). (16) 
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3 The One-Solitary-Boson-Exchange Potential 

In the following section, our Solitary-Meson-Exchange-Potential model is 
used to demonstrate the major problems in the modeling of nucleon-nucleon 
potentials using the boson exchange picture. As mentioned in the introduc­
tion today's models for NN interaction either refer to QCD but can not 
describe scattering data or - as is the case for the conventional boson ex­
change potentials - they contain empirical entities which must be fitted to 
experiment. 

The One-Solitary-Boson-Exchange-Potential OSBEP which was recently 
developed by the Harnburg group [1] tries to interpolate between these ex­
treme positions. Surprisingly, it turns out that the inclusion of typical fea­
tures from QCD inspired models can account for the empirical parts of usual 
boson exchange potentials preserving the high accuracy in the description 
of NN data. Therefore, we take the OSBEP as an illustrative example of 
how a microscopic model is used to obtain a boson exchange potential for 
nucleon-nucleon interactions. 

3.1 Solitary Mesons 

Motivated by the nonlinear character of QCD we assume a nonlinear self­
interaction for all mesons which enter the boson exchange potential. Doing 
so, we use the model of solitary mesons developed by Burt [6]. Here the 
decoupled meson field equation is parameterized by 

(17) 

where <Pis the operator to describe the self-interacting fields. For mesons with 
nonzero spin this operator is a vector in Minkowski space. The parameter 
p equals 1/2 or 1 to yield odd or even powered nonlinearities. Using this 
parameterization, equation (17) can be solved analytically. The solutions are 
represented as apower series in 'P [6] 

00 

cp = Lc~/2P(w) bn 'P2pn+t, (18) 
n=O 

where 'P is a solution of the free Klein-Gordon equation with meson mass 
m. These special wavelike solutions of ( 17) are oscillating functions which 
propagate with constant shape and velocity. Corresponding to the classical 
theory of nonlinear waves they shall be called solitary meson fields. The 
coefficients C~( w) are Gegenbauer Polynomials, b a.nd w are functions of the 
coupling constants and the order p of the self-interaction. To qua.ntize the 
solitary fields we use free wave solutions of the Klein-Gordon equa.tion in a 
finite volume V [7] 

(19) 
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where the operator a( k) annihilates and the hermitian adjoint a t ( k) creates 
quanta of positive energy 

w~ = k 2 + m 2 . 

At this point it is important to notice that we added a factor Dk which is an 
arbitrary Lorentz invariant function of Wk. As will become obvious later this 
constant is crucial for the proper normalization of solitary waves. 

The probability for the propagation of an interacting field can now be 
defined as the amplitude to create an interacting system at some space-time 
point x which is annihilated into the vacuum at y. Since the intermediate 
state is not observable and the particles are not clistinguishable a weighted 
sum over all intermediate states has to be performed [8] 

iP(y-x)= 
00 1 L L - 1 [(üjcP(y, k)!Nk}(Nk jcPt(x, k)jO}O(y0 - x 0 ) 

N. 
k N=O 

+ (OjcP(x, k)jNk}(NkjcPt(y, k)jO}O(xo- Yo)]. (20) 

A straight forward ca.lculation yields the desired a.mplitude in momentum 
space 

(21) 

with the Feynman propagator 

(22) 

and a mass-spectrum 
Mn = (2pn + l)m. 

Since V · wk is a Lorentz-scalar the amplitude (21) is Lorentz invariant. At 
this point it is convenient to introduce the dimensionless coupling constants 
a, a 1 and a2 which we define as 

b 
a := (2mV)P' 

)q 

a 1 := 4(p + l)m2 (2mV)P' 

.\2 
a 2 := 4(2p + l)m2 (2mV)2P · 

(23) 
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This yields 

(24) 

and 

00 2 

iP(k2,m) = L [c~I2P(w)] (25) 
n=O 

[(mPa1)2- m2Pa2r (2pn + 1)2pn-2 . 
x zLlp(k2 M ). 

D~pn+l(k 2 + MJ)Pn ' n 

The amplitude (25) shall be referred to as modified solitary meson propaga­
tor. For p = 1 one gets the amplitude for the propagation of pseudoscalar 
fields, p = 1/2 describes scalar particles. The series (25) converges rapidly, 
depending on the mass the subsequent terms diminish by two ( 7r) or three 
(w) orders of magnitude and in practical calculations it is sufficient to use 
nmax = 4. 

3.2 Proper Normalization 

The propagator (25) contains the arbitrary constant Dk which can depend 
on the energy wk and the coupling constants and is fixed by the conditions 
[6] 

all amplitudes must be Lorentz invariant, 
Dk must be dimensionless, 
all self-scattering diagrams must be finite, 
the fields have to vanish for Al, A2 --+ 0. 

Whereas the first three conditions are evident the last one requires to recall: 

If a particle has no interaction then there is no way to crea.te or 
measure it and the amplitude for such a process vanishes. The field 
exists solely because of its interaction. 

The proper normalization constant is a powerful tool to avoid the problern 
of regularization which arises in conventional models. In a Aq>4-theory for 
example, which is described by setting A2 = 0 and p = 1, one gets infinite 
results calculating the first correction to the two-point function iP( k2 , m). 
A proper normalization, i. e. using the smallest power 

makes the result finite. A different situation occurs in models including mas­
sive spin-1 bosons. Such a case, with or without self-interaction, is harder 
to regularize due to the additional momentum dependence which arises from 
the tensor structure in Minkowski space. Nevertheless, the vector mesons p 



132 L. Jäde, M. Sander, and H. V. von Geramb 

and w are important ingredients in every boson exchange model. A minimum 
power proper normalization to solve this problern is 

In summary, we satisfy the above stated four conditions with 

D, ~ { 1+ [ ( 7:) l + ( 7:) }w, V)' r 
{ 

"' = 1 for scalar and 
pseudoscalar mesons. 

where: 

"' = 2 for vector mesons. 

3.3 The Benefits of OSBEP 

(26) 

With its proper normalization, the solitary meson propagator now is com­
pletely determined and can be applied in a boson exchange potential. In 
conventional models a renormalized Feynman propagator is used to describe 
the meson propagation. Additionally, an empirical form factor is attached to 
each vertex to achieve convergence in the scattering equation. In a model 
with solitary mesons as excess particles the solitary meson propagator (21) 
should be used instead of the Feynman propagator. Due to the proper nor­
malization, the solitary meson propagator already carries a strong decay with 
increasing momentum and thus offers the possibility to forgo the form factors. 
Therefore, proper normalization not only eures the problern to regularize the 
meson self-energy but simultaneously provides a meson propagator which is 
able to substitute the form factors and thus partly rejects the phenomeno­
logical character from the boson exchange picture. 

Additionally, comparing the properly normalized solitary meson propa­
gators to the Bonn-B form factors, we find an empirical scaling relation for 
the meson self-interaction coupling constants (23). We regarded the simple 
case .\2 = 0 to obtain (1] 

and: 

for scalar fields, 

for pseudoscalar 

and vector fields. 

(27) 

Thus, the pion self-interaction coupling constant a" is the only parameter to 
describe the meson dynamics. This connection between masses and coupling 
constants can be anticipated in a model which is motivated by QCD and thus 
puts physical significance into the parameter a". 
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Together with the meson-nucleon coupling constants the model contains 
a total number of nine parameters (see Table 1) which are adjusted to ob­
tain a good fit to np scattering phase shifts and deuteron data (see Table 2 
and Figure 1). The agreement with scattering observables (Figure2) is ex­
cellent and the goal to achieve a description of experimental data which is 
comparable to the Bonn-B potential is accomplished. 

Table 1. OSBEP parameters 

7r 

"' 
p w uo U! 8 

sP o- o- 1- 1- o+ o+ o+ 
g~ 
47r 

13.7 1.3985 1.1398 18.709 14.147 7.8389 1.3688 

0',.. = 0.428321 

Table 2. Deuteron Properties 

Bonn-Ba OSBEP Exp. 

EB (MeV) 2.2246 2.22459 2.22458900(22) 

J-!d 0.8514b 0.8532b 0.857 406(1) 
Qd (fm2 ) 0.2783b 0.2670b 0.2859(3) 
As (fm-112 ) 0.8860 0.8792 0.8802(20) 
DfS 0.0264 0.0256 0.0256( 4) 
TRMS (fm) 1.9688 1.9539 1.9627(38) 
Pn (%) 4.99 4.6528 

aData from [4] 
bMeson exchange current contributions not included 

4 The Quest for Off-Shell Effects 

Concerning nucleon-nucleon scattering, boson exchange models and inver­
sion potentials show excellent agreement with experimental data. The results 
of the OSBEP and Bonn-B models are shown in Figure 1, the inversion po­
tentials reproduce the phase shifts by construction. The next step is to apply 
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Fig.l. Selected np phase shifts: Arndt SM95 (circles), Nijmegen PWA (dashed), 
Bonn-B (dotted) and OSBEP (full). 

both potential models in more complex reactions to find out whether the ab­
sent off-shell information in the inversion potentials would lead to a break­
down of the model in situations where the off-shell part of the scattering am­
plitude contributes. Three of such processes have been considered and shall 
be reviewed her: Application of model potentials in (p, PI) Bremsstrahlung 
(9], calculations of triton binding energy (10] and- most recently- usage of 
boson exchange and inversion potentials in an in-medium, full-folding optical 
potential model for nucleon-nucleus scattering (11]. 

The strategy to compare boson exchange and inversion potentials is as 
follows. We take some modelpotential t-matrix tmod(k, k') with its charac­
teristic off-shell (i. e. k =f:. k') behavior, calculate the phase shifts from the 
on-shell informations tmod(k, k), use these model phase shifts to calculate an 
inversion potential Vt(r), as described in Section 2, which in turn yields a 
t-matrix tinv(k, k') where the off-shell behavior is uniquely defined by the 
restriction (5] 

100 
rjVt(r)l dr < oo for a 2: 0. (28) 

Therefore, any on-shell difference of inversion potentials will lead to off­
shell differences of the t-matrix. On the other hand, the off-shell behavior 
of the model t-matrix and the t-matrix obtained from inversion will in gen­
eral be entirely different, at least for large momenta. Therefore, comparing 
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tmoa(k, k') and tinv(k, k') in off-shell sensitive reactions works as a tool to 
test whether off-shell differences of on-shell equivalent t-matrices manifest 
themselves in the calculation of observable data. 

4.1 Cross Sections for (p, P"Y) Bremsstrahlung 

In Figure 3, the theoretical (p, PI) cross sections for several potentials are 
shown. In detail, Jetter et al. [9] calculated cross sections using the boson ex­
change potentials Paris and Bonn-B [1] as well as inversion potentials from 
the Nijmegen PWA [12] and phase shifts from the Bonn-B potential. Two 
kind of calculations for (p, PI) cross sections were a.pplied. First, an on-shell 
a.pproximation which is shown as upper curve in Figure 3 a.nd clea.rly misses 
the da.ta, second an exa.ct off-shell ca.lcula.tion which is represented by the 
lower curve. Obviously, using the exact ca.lcula.tion all potentials a.re consis­
tent with the data, boson exchange models leading to equivalent results as 
inversion potentials. Additionally, as a surprising result the cross section for 
(p, PI) Bremsstrahlung, which was assumed to be sensitive to the off-shell 
behavior of the t-matrix, can not distinguish between the original Bonn­
B potential ( dashed line) and the on-shell equivalent but off-shell different 
inversionpotential ( dotted) abtairred from Bonn-B model phase shifts! Con­
sequently, nothing can be learned about the off-shell properties of the NN 
scattering amplitude from (p, PI) Bremsstrahlung. 
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Fig. 3. Left figure: Theoretical (p, p-y) cross sections from various boson exchange 
and inversion potentials. The lower curves show the results for an exact calcula­
tion whereas the upper curves represent an on-shell approximation. The lines are 
Nijmegen PWA inversion (solid), Paris (dash-dotted), Bonn-B (dashed) and an 
inversionpotential from Bonn-Bphase shifts (dotted). Right figure: Tritonbinding 
energy versus deuteron D-state probability for various potentials. Note the large 
differences in both entities for the genuine and inversion Bonn-B potential, whereas 

Paris original and Paris inversion show similar results. 
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4.2 Triton Binding Energies 

Analogue to (p, P'Y) Bremsstrahlung calculations, a number ofpotentials were 
applied to compute binding energies of 3H [10). As representative examples we 
consider modeland inversion potentials for the Parisand Bonn-B potentials. 
The results follow the well-known correlation between the deuteron D-state 
probability and the binding energy EBeH) which is shown in Figure 3 for 
various models. All of the model predictions underestimate the experimental 
value of 8.48 MeV, a circumstance which will be discussed below. For the 
Bonn-B and Paris potential the exact values are listed in Table3. Note that 
for the Paris original and inversion potential the triton binding energies are 
the same whereas for Bonn-B a significant difference arises. The reason can be 
seen from an argument pointed out by Machleidt [13). The on-shell t-matrix 
is related to the central and tensor potential by the approximate relation 

Table 3. Deuteron D-State Probabilities and Triton Binding Energies 

Paris 

5.77% 
7.47 MeV 

Paris (inv.) Bonn-B 

5.69% 
7.47 MeV 

4.99% 
8.14 MeV 

Bonn-B (inv.) 

5.81% 
7.84 MeV 

J 3 I I M 1 

t(k, k) ~ Vc(k, k)- d k VT(k, k) k12 _ k2 _ it VT(k, k). (29) 

Thus, for the genuine Bonn-B and the Bonn-Binversion potential, which are 
on-shell equivalent, the sum of Born term and integral term in (29) is equal, 
while the respective terms themselves may be different. The deuteron D­
state probability on the other hand is dominantly determined by the tensor 
potential 

where tlfo(q) is the deuteron S-wave. Thus, two on-shell equivalent potentials 
may indeed lead to different D-state probabilities and triton binding energies 
due to differences in the tensor potential parts. Obviously, this is the case 
for the Bonn-B original and inversion potential. This can be understood 
from the fact that inversion potentials are first of all local functions of r in 
coordinate space since the scattering phase shifts as functions of k build a 
one-dimensional manifold (see Section 2). However, the microscopic boson 
exchange potentials, which are naturally formulated in momentum space, 
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are not necessarily local and this deviation may account for the differences 
in the tensor potential. Comparing the results for the Bonn-B and Paris 
potentials, one finds that the non-locality of the Paris potential obviously 
can be well represented by an on-shell equivalent local potential, whereas 
the non-locality of the Bonn-B potential produces a significant decrement of 
the D-state probability. This arises from the fact that the tensor force in the 
Paris potential is local, whereas the tensor potential in the Bonn-B potential 
is not. Thus, the nonlocality of the other potential contributions essentially 
play no role in the calculation of the triton binding energy. 

After all, the calculation of triton binding energies shows some sensitivity 
to the non-local structure of potentials. Unfortunately, there is an ongoing 
discussion about the influence ofthree-body forces and relativistic corrections 
on the triton binding energy so that none of the above results can be favored. 
Further work on this field seems desirable. 

4.3 Nucleon-Nucleus Scattering 

Embedded in an in-medium full-folding optical potential model various bo­
son exchange and inversion potentials have been applied to calculate ob­
servables of nucleon-nucleus scattering [11]. In Figure 4 we show the results 
obtained for the differential cross section and analyzing power for 4°Ca(p, p) 
scattering at 500 MeV using the Paris potential together with inversion po­
tentials from Parismodelphase shifts and phases from the Arndt SM94 PWA 
[14]. The conclusions are twofold: As in the case of (p, PI) Bremsstrahlung, 
the genuine Paris and Paris inversion potential results can not be distin­
guished by the experiment and thus no off-shell sensitivity can be found in 
the analysis of elastic nucleon-nucleus scattering. Additionally, a new effect 
occurs comparing the inversion potentials from SM94 phase shifts and the 
Paris potential. The SM94 inversion potential, which by construction fits the 
elastic NN data much better than the Paris potential, yields significant bet­
ter results for the cross section and the analyzing power. Conclusively, an 
improvement in the description of on-shell data also yields better results in 
nucleon-nucleus scattering. 

5 Summary and Outlook 

As described in Section 2 and 3, quantum inversion and boson exchange po­
tentials rest on entirely different footings. Whereas the latterare derived from 
some microscopic model, as the model of solitary mesons, leading to a mo­
mentum space potential with- in general - nonlocal behavior, the inversion 
potentials are obtained model-independently from the Gel'fand-Levitan or 
Marchenko algorithms. Since elastic NN scattering data enter the inversion 
potentialsvia the phase shifts c5.e(k) as a one-dimensional manifold, inversion 
potentials are local, energy-independent functions in coordinate space. This 
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Fig. 4. Differential cross section (left) and analyzing power ( right) for 4° Ca(p, p) 
at 500 MeV. We show results for SM94 inversion (solid), genuine Paris potential 
( dotted) and Paris inversion ( dashed). 

fundamental difference could be expected to produce significant deviations in 
the description of processes where the off-shell part of the t-matrix, which 
does not enter the phase shifts, contributes. 

Surprisingly, the application of boson exchange and inversion potentials in 
the calculation of (p, PI) Bremsstrahlung cross sections and nucleon-nucleus 
scattering observables produced equivalent results for the boson exchange 
potentials an their local Counterparts. Additionally, in the case of nucleon­
nucleus scattering it turned out that an improvement of the description of 
on-shell data also yields better results for off-shell observables. 

The only difference in the comparison of boson exchange versus quantum 
inversion potentials occurred in the calculation of triton binding energies. It 
turned out that the usage of local potentials enhances the D-state probability 
with respect to their non-local on-shell equivalents, leading to a lower triton 
binding energy. This effect could be traced back to differences in the tensor 
part of the potential which can differ for local and non-local potentials. Un­
fortunately, neither boson exchange nor quantum inversion potentials can be 
favored in this context due to the persistent uncertainty concerning the effect 
of three-body forces and relativistic corrections on the triton binding energy. 

To our disappointment, the study of the above reactions thus is not suit­
able to put boson exchange potentials to a comparative test. Therefore, as a 
future prospect, the application of boson exchange and inversion potentials 
in meson-nucleon and meson-meson scattering seems promising to test the 
concept of quantum inversion as well as the applicability of NN potential 
models in a wider range of hadron-hadron interactions. In this context, the 
OSBEP model can be expected to show interesting results. In contrast to 
conventional boson exchange potentials where the form factors in nucleon­
nucleon and meson-nucleon interactions are different, the concept of proper 
normalization in OSBEP remains unchanged. Thus, the OSBEP model may 
be able to describe both interactions consistently with a very small number 
of parameters. 



140 L. Jäde, M. Sander, and H. V. von Geramb 

Acknowledgements 

Supported in part by FZ Jülich, COSY Collaboration, Grant Nr. 41126865. 

References 

[1] M. M. Nagels, T.A. Rijken, and J. J. de Swart, Phys. Rev. D 17, 768 (1978); M. 
Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Cote, P. Pires, and R. de 
Tourreil, Phys. Rev. C 21, 861 (1980); R. Machleidt, K. Holinde, and Ch. Elster, 
Physics Reports 149, 1 (1987). 

[2] T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962); S. Weinberg, Phys. Rev. Lett. 18, 
188 (1967); J. Wambach, in Quantum Inversion Theory and Applications, edited 
by H. V. von Geramb (Lecture Notes in Physics, Springer, New York, 1994); 
C. Ord6nez, L. Ray, and U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994); C. M. 
Shakin, Wei-Dong Sun, and J. Szweda, Phys. Rev. C 52, 3353 (1995). 

[3] L. Jäde and H. V. von Geramb, LANL e-print archive nucl-th/9604002, sub­
mitted to Phys. Rev. C. 

[4] R. Machleidt, Adv. in Nucl. Phys. 19, 189 (1989). 
[5] H. Kohlhoffand H. V. von Geramb, in Quantum Inversion Theory and Applica­

tions, Proceedings of the 109th W. E. Heraeus Seminar, Bad Honnef 1993, edited 
by H. V. von Geramb (Lecture Notes in Physics, Springer, New York, 1994); 
M. Sander, C. Beck, B. C. Schröder, H.-B. Pyo, H. Becker, J. Burrows, H. V. 
von Geramb, Y. Wu, and S. Ishikawa, in Conference Proceedings, Physics with 
Ge V-Particle Beams (World Scientific, Singapore 1995). 

[6] P. B. Burt, Quantum Mechanics and Nonlinear Waves (Harwood Academic, 
New York, 1981). 

[7] C. ltzykson and J. B. Zuber, Quantum Field Theory (Mc. Graw-Hill, New York 
1980). 

[8] L. Jäde and H. V. von Geramb, LANL preprint server, nucl-th/9510061 (1995). 
[9] M. Jetter and H. V. von Geramb, Phys. Rev. C 49, 1832 (1994). 
[10] B. F. Gibson, H. Kohlhoff, and H. V. von Geramb, Phys. Rev. C 51, R465 

(1995). 
[11] H. F. Arellano, F. A. Brieva, M. Sander, and H. V. von Geramb, to appear in 

Phys. Rev. C 54 (1996). 
[12] V. Stoks and J. J. de Swart, Phys. Rev. C 48, 792 (1993). 
[13] R. Machleidt and G. Q. Li, LANL e-print server, nucl-th/9301019 (1993). 
[14] R. A. Arndt, LI. Strakovsky and R. L. Workman, Phys. Rev. C 50, 2731 (1994). 



Inversion Potentials for Meson-Nucleon 
and Meson-Meson Interactions 

M. Sanderand H.V. von Geramb 

Theoretische Kernphysik, Universität Hamburg, 
Luruper Chaussee 149, D-22761 Hamburg, Germany 

Abstract. Two-body interactions of elementary particles are useful in particle and 
nuclear physics to describe qualitatively and quantitatively few- and many-body 
systems. We are extending for this purpose the quantum inversion approach for 
systems consisting of nucleons and mesons. From the wide range of experimentally 
studied two-body systems we concentrate here on 1r N, 1r1r, J(+ N, K 1r ancl K K. As 
input we require results ofphase shift analyses. Quantuminversion Gelfancl-Levitan 
and Marchenko single ancl coupled channel algorithms are usecl for Schröclinger type 
wave equations in partial wave decomposition. The motivation of this study comes 
from our two approaches: to generate and investigate potentials directly from clata 
by means of inversion and alternatively use linear ancl nonlinear boson exchange 
moclels. The interesting results of inversion are coordinate space informations about 
radial ranges, strengths, long clistance behaviors, resonance characteristics, thresh­
olcl effects, scattering lengths and bound state properties. 

1 Introduction 

It is a paradigm of particle and nuclear physics to describe complex many­
body systems in terms of two-body interactions or two-body t-matrices. 
The formulation of a two-body interaction is therefore a central goal for gen­
erations of physicists, both of the experimental and theoretical community. 
Roughly speaking, we separate these efforts of finding two-body interactions 
into groups which orient themselves very closely on data, whereas the other 
extreme follows a fundamental approach. In another contribution to this con­
ference we have dwelled upon the need to follow both approaches [1]. 

Encouraged by the tremendous success of the inverse scattering method 
for fixed angular momentum in application to nucleon-nucleon interactions 
we extend our study in this contribution to meson-nucleon and meson-meson 
systems in the framework of the Gelfand-Levitan and Marchenko theory. A 
comprehensive description of our mathematical and numerical framework can 
be found elsewhere [2,3] and we shall concentrate here solely on the presen­
tation and interpretation of results which are a small fraction of all results 
contained in the thesis [4]. In particular we study 1r N, 1r1r, !{+ N, J{ 1r and 
J{ R scattering. As experimental input for the inversion algorithms we used 
phase shift analyses of Arndt et al. for 1r N [5) and !{+ N [6], of Froggatt 
et al. for 1r1r [7] and of Estabrooks et al. for ]{ 1r [8]. We limit ourselves to 
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subinelastic and subreaction threshold data. An effective range parameteriza­
tion is used for the K K system [9]. A critical and comprehensive assessment 
of the data can be found in [4]. 

For the two-body system the relativistic Schrödinger equation 

- J2(k, r) + ( f(fr~ 1) + 2J.t(s)Vt(r)) ft(k, r) = k2 ft(k, r) (1) 

is assumed tobe valid. The CM parameters are given by 

k2 = m~(TEab + 2mlTLab) 
(m1 + m2)2 + 2m2TLab. 

or 

with 

(2) 

(3) 

s = M[2 = ( Vk2 + mr + /P + m~) 2 
= (ml + m2)2 + 2m2hab, (4) 

m1, m2 are the masses of the projectile and the target and TL ab is the kinetic 
energy in the laboratory. The experimental data are given either as a function 
of TLab or the Mandelstam variable s. As reduced mass J.t(s) we use either 
the non-relativistic reduced mass 

(5) 

or the reduced energies [10] 

1 dk2(s) 1 s2 - (mr- mD2 

J.t(s) = 2 dy's = 2 2s3/ 2 (6) 

This expression (6) is generally approximated by the low-energy limit 
or the conventional non-relativistic reduced mass. Any of these options is 
to be motivated by the application of the intera.ction potentials in other 
contexts. Depending on the choice of the reduced mass, we obtain different 
inversion potentials. The potential is in any case loca.l and energy independent 
but dependent on the channel quantum numbers (fSJT). Our numerical 
algorithm guarantees that insertion of the potential in eqn. (1) reproduces 
the input phase shifts o(k) better than 0.02°. 

The simplicity of our potential operator may be surprising in view of the 
non-locality implied by results from meson exchange models. It is also our 
opinion that the actua.l potential should be non-local, but we understand 
that the inversion potential represents a local equivalent yielding the same 
on-shell two-body t-matrix for the full operator. The local potential permits 
to compute off-shell t-matrices with a Lippmann-Schwinger equation with 
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the implication that a non-local potential may yield a different off-shell con­
tinuation than a local potential. This difference in the off-shell domain can 
become important in few- and many-body systems or in the interaction re­
gions of two-body wave-functions. For nucleon-nucleon systems we have put 
much effort in attempts to clarify this point and find no evidence for differ­
ences in observables [1 ,4]. This is a very surprising result and it is the purpose 
of this study to initiate a comparison of strictly equivalent local on-shell po­
tentials with their non-local Counterparts in the realm of meson-nucleon and 
meson-meson interactions. 

2 1r N Scattering 

Partial wave phase shifts of the 7r N system are determined by an analysis of 
elastic and charge exchange scattering 1r+p-+ 1r+p, 1r-p-+ 1r-p and 1r-p-+ 
1r0n. They form a complete set of observablesentering a partial wave analysis 
with isospin T = ~ and ~ [5]. The notation for the isospin and angular 
momentum channels is /!2T,2S· We used the SM95 analysis of Arndt et al. for 
channels I!~ 3 [4,5]. 

-rrN p-Wave Resonances 

The mostprominent resonances are the Ll(1232) in the P33 and the N(1440) 
Roper resonance in the Pu channels. The phase shifts for these resonances 
are shown in the left part of Fig. 1. We factorize the S-matrix into a resonant 
and a non-resonant part S(k) = Sr(k)Sp(k). For the resonant part we use 

'ff 120 
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Fig. 1. Left: 7r N real phase shifts in the resonant channels ( dashed) and their 
reproduction by the inversion potentials (fullline). 
Right: 1r N P33 potential from quantum inversion. 
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Table 1. 1r N resonance parameters used in the inversion scheme. 

1r N channel Re( kr) [fm - 1] Im( kr) [fm - 1] Mass [MeV] Width [MeV] Name 

Pu 1.8200 -0.6200 1381 159 N(1440) 
p33 1.0665 -0.2440 1212 102 .1(1232) 
D 13 2.2900 -0.1050 1514 93 N(1520) 
F 1s 2.8520 -0.1230 1674 72 N(1680) 

a resonance and an auxiliary pole parameterization [11] 

S (k) = (k + kr )(k- k;) (k + kh)(k- kj;) 
r (k-kr)(k+k:)(k-kh)(k+kj;)' 

(7) 

which contains the right amount of zeros and poles for a decomposition into 
J ost functions. The rest Sp ( k) of the S-matrix is parameterized in our usual 
parameterization scheme for 8p(k) in connection with the symmetric Pade 
approximant for the exponential function [3]. 

In Table 1 are summarized the relevant parameters for this decomposition 
using SM95 [5]. As shown in Fig. 1 (left) this reproduces the input phase 
shifts very well for T." ~ 500 MeV. In Fig. 1 (right) we show the inversion 
potential for the P33 channel with a repulsive well, enabling tunneling for 
the pion-nucleon system, with a very strong short range attraction, which 
yields the ..:1(1232) quasibound state. The long range part of this potential, 
not visible in Fig. 1, behaves like a Yukawa tail with a strength Y = 650.0 
[MeVfm] and p. = 1.77 [fm- 1], seealso section 5. The relative distance ofthe 
centers ofmass in the strong attractive region is unexpectedly small, r ~ 0.25 
fm. In view of the large radii of the charge form factor of the pion and the 
nucleon, approximately 0.54 fm for the pion and 0.7 fm for the nucleon, this 
relative distance implies more than 90% overlap of the intrinsic structures 
before the strong attractive potential simulates a. phase transition of the 
pion-nucleon quark content into the 3-quark content of the ..:1. Ultimately 
such explanation must be confirmed by QCD calculations. We decline and 
warn from a far reaching interpretation of this potential with its strength and 
radial dimensions. 

1r N Scattering Lengths and 1r N N Coupling Constants 

From the 1r N potentials in the T = ~, ~ s-channels we find the scattering 
lengths a1 = 0.178 [m;1], a3 = -0.088 [m;1]. Fora. comparison with several 
other predictions see Table 2. These results may be used in the Goldberger­
Miyazawa-Oehme sum rule [16] 

f'/rNN (m;-p.2)(mN+m.")( ) m;-p.21oo(J"."-p-(J"."+pd (8) -- = al -a3 - 2 q 
47r 6mNm." 81r o Jq2 + m; 
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Table 2. 7r N s-wave scattering lengths from several models and experimental anal­
yses tagether with predictions for the 7r N N coupling constant obtained from the 
GMO sum ruleo 

Model a1 [m;1 ] a3 [m;1 ] f;NN/471" Ref. 

SM95 Inversion 00178 -00088 000766 

KH80 00173 -00101 00079 [12] 
Jr-p 1s state Oo185 -00104 Oo081 [13] 

Pearce et al. 00151 -00092 00072 [14] 
Schütz et alo Oo169 -00085 Oo074 [15] 

to obtain a model independent estimate for the 1r N N coupling constanto 
Using the simplified form of this sum rule [17] 

where the integral 
1 100 (J'rr-p- (J'rr+p :J = -2 dq 

47r 0 vq2 + m; 

has the VPI value :J =-1.041mb, we find 

f'frNN = 000766, 
47r 

or 
2 

grrNN = 13084, 
47r 

which is fully consistent with the value of 13075 ± 0015 given in [5]0 

(9) 

(10) 

(11) 

The Coulomb attraction between 7r- and p causes a bound system called 
pionic hydrogen Arrp 0 Additionally, the hadronic interaction between the 
two constituents distorts the short range interaction and changes the pure 
Coulomb spectrumo Decay channels 7r- p ---+ 1r0 n and 7r- p ---+ 1n allow a rapid 
decayo 

The hadronic shift of the 3p ---+ 1s transition and the total 1s width 
has recently been measured at PSI [13]0 To analyze this experiment we use 
quantum inversion for the determination of the hadronic potentialso Inelas­
ticities, Coulomb and other isospin breaking effects are supposed to be not 
included in the SM95 phase shift analysis [5]0 Using the Sn and S31 phase 
shifts shown in Figo 2, we obtain the hadronic potentials V11 (r) and V31 (r), 
Figo 3 (left) 0 The inversion algorithm uses only the nonrelativistic reduced 
mass p, = 121.50 MeV based upon the 7r± and p masses, consistently with 
the phase shift analysiso 
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In the next step we apply a rotation of these potentials in isospin space 

from good isospin states into particle eigenstates. This yields the potential 

matrix Vii (r) of the coupled radial Schrödinger equation 

2 

ff'+kt/;=L2J.LiVii/j, i=1(2) for 7r-p(7r0n) (12) 
j=l 

for the 71"- p <-+ 7!" 0 n system. The potential matrix contains the isospir1 rotation 
coefficients and the Coulomb attraction 

(13) 

(14) 

(15) 

The hadronic part of this matrix is shown on the right side of Fig. 3. The 

reduced masses we used are J.ll = 121.50 MeV and J.L 2 = 118.02 MeV. In 

Table 3 we signal this choice with the parameter x = -1. This mass difference 

introduces an additional isospin breaking effect. Since this issue is of central 

importance for the pion-pion system in the next section we investigate this 

point in further details also here and distinguish the alternative calculation 

with J.ll = J.L 2 = 121.50 MeV and x = +1. Generally it is assumed that charge 

and mass isospin-breaking effects should have a small impact on the lifetime 

and width of A"P or the eigenchannel phase shifts. 
The bound states of the 71"- p system can be found as resonances in the 

energetically open 7!"0 n channel, showing a partial width r;;.-p-+1T"n deduced 

from the elastic cross section 

o o 7f I 1 ~ 0"( 7f n __,. 7f n) = 2 1 - s22 -. 
k2 

(16) 

Results for the ground state are given in Table 3. To account for the full 

experimental width one has to correct the partial width with the Panofsky 

ratio P = 1.546 ± 0.009 [13] 

1 +- r" p-+1T n ( 1) - 0 

p ns · (17) 

To show the effect of isospin breaking caused by different reduced masses 

in channel 1 and 2, we repeated this calculation with J.l2( 7!" 0 n) set equal to 

J.ll ( 7!"- p). These results are also included in Table 3 with x = + 1. Furthermore 

we have accounted for the 1n decay by the introduction of a phenomenologic 

imaginary Gaussian potential W(r) = W11 = -0 exp(-4r2) in eqn. (12), 

where we replace V11 .....,. V11 + iW11 . The point Coulomb potential is replaced 

by double folded Gaussian charge distributions for the pion and nucleon 
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r r 

All results are shown in Table 3. They agree weil with the experimental values, 
and the small isospin breaking effects from the mass difference confirm our 
assumption and establish an excellent support of the inversion approach. 

6or------------------

s .. 
:10 

Fig. 2. 1r N SM95 [5] ( dashed line) and KH80 [12] ( triangles) data with reproduction 
by inversion potentials (solid line) for the 1r N Su and S 31 channels. 
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Fig. 3. 1r N inversion potentials using SM95 phase shifts (left) , and the potential 
matrix ( right). 
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Table 3. Hadronic shift of the 1s level, with respect to the pure Coulombic reference 

energy Efs = 3234.9408 [eV], and partial widths F1~-P~"0 n. These partial widths 

have to be multiplied with 1.647 to account for the Panofsky ratio to obta.in the 

total widths. This yields a typical value "" 0.862 [e V] to be compared with the 

experimental value F1s = 0.97±0.10±0.05 [eV]. The strength of the imaginary part 

in the last entry wll is adjusted to reproduce the experimental value. 

X 

-1 
+1 

t-t(s) 

Point Charge Coulomb 

Shift [eVJ FWHM [eVJ 

-7.13259 
-7.29821 

0.5187 
0.5250 

Gaussian Charge Coulomb 

Shift [eV] FWHM [eVJ 

-7.01055 
-7.16746 

0.5144 
0.5230 

-7.26334 0.5317 -7.13259 0.5266 

Shift = -7.127±0.046 [eV], F{"5°n = 0.590 [eVJ 

-1 -7.23259 0.9763 -7.12387 0.9763 

Shift = -7.127±0.028±0.036 [eV), F1 s = 0.97±0.10±0.05 [eV) 

3 1r1r Scattering 

Sigg [13) 

Vl1 + iWu 
Sigg [13) 

7r7r phase shifts come from the analysis of final state interactions in 1r N ---+ 

7r7f N systems or the K e4-decay K- ---+ 7r+ 7r- eil. Here we use results of the 

CERN-M unich experiment [7] 1r- p ---+ 7r+ 1r- n for all channels with R ::=; 3. The 

scattering is purely elastic up to M"" = 987.3 MeV where a coupling 7r+7r- f-+ 

KR becomes dominant. In addition to the experimental data of Froggatt et 

al. [7] we use data from meson exchange models [18] and chiral perturbation 

theory xPT [19]. Notation for the isospin and angular momentum channels 

uses oJ or VeT. The inversion results are shown in Fig. 4. 

Similar to the 1r-p system there exists pionium A1r1r which is formed 

by 7r- 7r+ Coulomb attraction and decays by charge exchange into the open 

1r0 7r0 channel. The coupled channel system is equivalent to eqn. (12) replacing 

p ---+ 7r+ and n ---+ 1r0 . We assume the same approach and rotate the good 

isospin potentials into particle states [22] which recluces to the same form as 

given by eqn. (13)- (15), simply replace V11---+ V0° and V31 ---+ V02 • Phase shift 

analyses and inversion use a single mass J1 = m1r+ /2 without Coulomb effects. 

This assumtion guarantees good isospin T = 0 and 2. With the purpose to 

display uncertainties in the phase shifts we used three sources and distinguish 

a set of three potentials for V0° and V02 respectively. They are shown in Fig. 

4 (right), of which the V0° potential is of particular interest. Similar to the 

1r N P33 channel potential we find here a potential barrier and a very strong 

short range attraction. Such potential may be able to support a potential 

resonance similar to the L\-resonance in the 7r N P33 channel, but. here in 

the R = 0, T = 0 channel the resonance width is expected larger than for 

R = 1 since the resonance conditions are more delicate due to the centrifugal 

barrier. The radial dimensions and potential strenghts are quite comparable. 
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It is obvious to ask if the implied great width resonance supported by this 
potential can be identified with the isoscalar (J' meson which OBE potential 
require and which is of general interest [23,24,25,26). It is intended to study 
this resonance in more details by our OSBEP approach and use also other 
experimental information. A first glance on this investigation is given by 
simply using different reduced masses in eqn. (12). This changes effectively 
the strength of V0° within a few % but causes a dramatic change of the 
eigenchannel phase shifts which can be identified with the T = 0 isospin 
state. In Fig. 5 we show three cases of different choices of f..li. Fig. 5 (top left) 
f..lt = l-"2 = m1r+ /2 without Coulomb potential. This confirmes the original 
input phase shifts used for the inversion. (top right) f..l l = m1r+ /2, f..l 2 = m'lro /2 
which are the correct reduced masses in the nonrelativistic limit. As expected, 
the eigenchannel phase 86 remains unchanged, whereas 88 is now fa.r off the 
data. (bottom) f..lt = 1-"2 = m'lro /2 is a further step, and we observe little 
change for 86 but a dramatic effect for 88. This investigation is supposed to 
show that the strength of the potential enters very sensitively and changes 
the 88 phase in a wide range quite untypical for a resonance. The effects 
upon the lifetime of pionium has already been studied and we observe a 
dramatic change of lifetime compared between what is given in Table 4 and 
[22). This change requires a deeper understanding since the hypothetical (J'­

meson is producing the medium- rangeN N attraction. Medium effects of this 
resonance should be of particular importance and we are presently studying 
this aspect in microscopic optical potentials for nucleon-nudeus scattering. 

'Cl 25 

- 25 
0.0 

.,. 
0 

1.0 

zoor--~--.----........., 

V' 

0.25 
r frm] 

0 .50 

Fig.4. Left: 1r1r e = 0 phase shifts from xPT (crosses) and the reproduction by 
the inversion potentials (full line), from the analysis by Fraggatt (dots) and the 
reproduction by the inversion potentials (dashed). 
Right: 7r7r e = 0 inversion potentials based Ollphase shifts from xPT (fullline) , the 
analysis by Fraggatt (dashed) and meson exchange (dotted). 
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Table 4. A1r1rproperties from inversion potentials. The Point Coulomb ground state 

reference energy Efs = 1.85807248 [keV]. (x=+1) = /-Ll = /-L2 = m7r+/2. 

X 

+1 
1-L( s) 

+1 
1-L(s) 

+1 
1-L( s) 

E1s [keV] Shift [eV] T [10-15 sec] FWHM [eV] Reference 

1.8638814 -5.809 1.97 0.3481 Fraggatt 

1.8636070 -5.538 2.05 0.3337 Fraggatt 

1.8635114 -5.439 1.89 0.3627 Lohse 

1.8632880 -5.216 2.03 0.3385 Lohse 

1.8616174 -3.545 3.22 0.2128 XPT 

1.8614390 -3.367 3.37 0.2031 XPT 

Predictions from experimental analysis and other models 
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Fig. 5. Eigenchannel phase shifts. More details given in the text. 
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Table 5. J<+ N s-wave scattering lengths from several models and experiment. 

Modell ao (T = 0) [fm] ao (T = 1) [fm] Ref. 

SP92 0.00 -0.33 [6] 
Inversion 0.00 -0.33 

Meson Ex. (A) 0.03 -0.26 [27] 
Meson Ex. (B1) -0.15 -0.32 [27] 

20 

~ 10 

~ 
F,. ~ > ~ 

~ ~ .. ~ ~ F., :::.. > 0 F,. 
F." 

-10 
0 500 1000 

T, [MeV) 

r [Im) 

Fig. 6. Left: K+ N .e = 3 phase shifts from the analysis SP92 (6] ( dashed) and their 
reproduction by the respective inversion potentials (fullline). 
Right: J<+ N .e = 3 inversion potentials. 

4 K+ N, K 1r and K lt Scattering 

K+ N Scattering 

Kaons introduce strangeness into the inversion algorithm where the configu­
rations J<+ N, I<0 N with S = + 1 and I<- N, K0 N with S = -1 are a.llowed in 
I< N scattering. The S = -1 channels show strong resonance effects whereas 
the the S = + 1 channels are smooth. Phase shift analyses are restricted by 
Arndt in SP92 [6] to the J<+ N system. In Fig. 6 we show the result for f = 3, 
the nomenclature used is fT,2J, J = f ± ~- The results show little structure 
in the radial dependencies. Undoubtedly the range of the potential is Ionger 
than for the 1r N system. The long range part of the interaction is discussed 
in section 5. We calculated J<+ N s-wave scattering lengths from inversion 
potentials and compare them with predictions of the phase shift analysis and 
models. They are summarized in Table 5. Predictions from meson exchange 
models [27] agree either with the T = 0 or 1 scattering lengths. 
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Table 6. K7r s-wave scattering lengths from different theoretical models and ex­
perimental analyses. 

Model aä [m;1] ag [m;1] Ref. 

Estabrooks 0.331 -0.138 [8] 
Inversion 0.340 -0.147 

Meson Ex. 0.23 -0.064 [18] 
xPT 0.17 -0.05 [28] 

Quarkmodel 0.23 -0.077 [29], [30] 

K 1r scattering 

Suitable informations for /{ 7r scattering come from final state interaction 
analyses of the reactions K±p ~ J{±7r+n, and /{±p ~ /{±7r- ,Ll++. The 
notation for channel identification is 8]T, where T = ~ or ~· Well known 
resonances in this system are K*{892) and KH1430). The phase shift analysis 
starts at MK"' = 0.73 GeV and remains elastic up to 1.3 GeV [8]. There is 
a gap between threshold, MK1r = 0.63 GeV, and the first data points. We 
bridged this gap with a smooth extrapolation with limk ...... o 8]T (k) = O(Pl+1) 

[4]. 
Our scattering lengths, see Table 6, agree well with estimates from dis­

persion relations {0.22 2: aö 2: 0.045, -0.10 2: ag 2: -0.165) [31] and the 
experimental values [8], but they are 1.4 to 3 times larger than predictions 
from various models. To solve this puzzle, more data between the /{ 7r thresh­
old and MK"' = 730 MeVare needed. 

K lt Scattering 

There exist no phase shift analyses for this system, and we have to rely upon 
an effective range expansion by Kaminski and Lesniak [9]. Their expansion 
may be disputed since they neglect inelasticities. This describes briefly the 
experimental situation with the implication that our analysis represents only 
some qualitative features. 

We are using two sets of parameters from [9] in the effective range expan-
SlOn 

1 1 2 4 
kcot8K(k) = -R-- + -RKk + VKk 

e aK 2 
(18) 

whose values are given in Table 7. The phase shifts 80 ( MK K) from this pa­
rameterization are shown in Fig. 7, tagether with the inversion potentials 
which reproduce the effective range expansion with high precision. There ex­
ists a claim from lattice QCD that the short range attractive interaction has 
an explanation in a non-vanishing propagator structure [32]. 
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Table 7. K k isoscalar scattering lengths from [9] and their reproduction by inver­
sion potentials. 

Modell Re aK [fm] RK [fm] Vg [fm3] 

Set 1 -1.73 0.38 -0.66 
Inversion -1.73 0.38 

Set 2 -1.58 0.20 -0.83 
Inversion -1.58 0.20 

-800 
-50 L.-~-~--~-~_j 

0.5 1.0 1.5 
MM [GeVJ 

2.0 
-1000 

r [Im] 

Fig. 7. Left: K k f. = 0 real isoscalar phase shifts calculated from the effective range 
expansion (dashed) using the parameters given by Kaminski and Lesniak [9] and 
their reproduction by the inversion potentials (fullline). 
Right: K k f. = 0 real isoscalar potentials from quantum inversion based on the two 
sets of parameters given by Kaminski and Lesniak [9], set 1: fullline, set 2: dashed. 

5 Long Range Behaviors 

In the display of inversion potentials we restricted ourselves to the big effects 
at distances between 0-2 fm and emphasized the short range domain. Ac­
tually, the most reliable information is the long range part of the potentials 
which can be parameterized in terms of a Yukawa potential with a range 
parameter given by the Compton wave length of an exchanged particle. For 
the pion-nucleon system we have also dwelled upon the coupling constant. In 
Table 8 are summarized the long range Yukawa parameters V(r) = Ye-1-1r jr 
which we extracted from our inversion potentials in the 1!. = 0 channels. We 
find that the exchanged masses in pp, KR and /{+ N may be interpreted 
as one-pion, two-pion and one-0"1 exchange respectively. From the micro­
scopic point of view, the propagators of a dominant pseudoscalar or scalar 
s-channel exchange transform into a Yukawa-like potential tail. In 1r N, 1r !{ 

and 7r7r scattering this interpretation is not valid, since here s- and t-channel 
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graphs contribute and thus a transformation into coordinate space does not 
lead to a Yukawa with a physical mass of an exchange particle. A more de­
tailed discussion of this table and its implications can be found in (4]. 

Table 8. Yukawa parameters. The mass of the exchanged particle 1s given by 
/1> = rr;,c. 

Y [MeVfm] p, [fm-1 ] m [MeV] 

PP 14.4 0.684 134.97 
J(+N 1325.85 2.9436 580.85 
J{f( 1923.59 1.316 259.68 
7rN 111.84 1.61 317.70 
Jr!{ 638.1 1.87 368.4 
7r7r 1081.28 2.219 437.87 

6 Summary and Conclusions 

With this contribution we show that the rich sources of phase shift analyses 
for general hadronic systems can successfully be used to obtain a qualitative 
and sometimes quantitative understanding of the interaction in terms of a 

simple local potential. The ranges and strengths of these potentials are of­
ten determined by the masses of the scattered particles and the spin-isospin 
dependence of the partial waves. This dependence can often be understood 
in terms of a boson exchange picture and ultimately may be related to the 
underlying QCD dynamics. The latter aspect is most obvious in the p-wave 
resonanves of the 1r N system. With this first attempt of using quantum in­
version to study the realm of hadronic interactions we establish encourage­
ment to look for alternative equations of motion which should account better 
for the relativistic kinematics which is definitely important for the lighter 
hadronic systems or any extension towards higher energy. Various relativistic 
wave equations have been studied and applied in recent years when treating 
hadrons with quarks as their constituents. 
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Abstract. The modified Newton-Sahatier method is applied to invert electron­

atom scattering phase-shifts into effective potentials. The phase-shifts are corrected 
for the dipole polarisation interaction of the form -a/2r4 • Polarisation phase shifts 

are calculated by the method of Holzwarth by using Mathieu functions of the sec­

ond kind. The inversion potentials are compared with the potentials determined 

earlier by inverting the corresponding total phase-shifts. Examples involving syn­

thetic as weil as experimental phase-shifts show that the new method is capable of 

determining electron-atom potentials from a substantially smaller set of data at the 
cost of a prior determination of the underlying complex polarisation pha.se-shifts. 

1 Introduction 

Charge induced dipole interaction plays an important role in various fields of 
physics where charged particle interacts with polarisable neutral target. For 
example, the presence of the polarisation interaction is the cause of the weil 
known Ramsauer-Townsend effect making low energy electron scattering by 
inert gas almost transparent. 

The induced electric dipole interaction may cause a severe problern in 
performing phase-shift analysis of measured electron-atom differential cross 
sections. The long range nature of the interaction requires treating so many 
partial waves that an accurate phase-shift analysis can exhaust the capacity 
of the largest computers to date. The appearance of great number of total 
phase-shifts 'T)I may hinder the accomplishment of fixed-energy inversions as 
weil. It is the aim of this paper to develop a modified scattering method 
which enables us of using only few polarisation corrected phase shifts in the 

phase-shift analysis or the inversion procedure. 
The problern raised by the great number of phase-shifts can be solved 

by dividing the region of the interaction into two parts; an interior part, 
where only the internal forces are dominating the scattering process by the 
core potential Vc(r ~ r 0 ), and an outer part where only the electric charge 
induced dipole polarisation interaction of the form V0 (r 2: r 0 ) = -a/2r4 

plays a role with a being the ( calculable) dipole polarisability of the target 
atom (molecule). Then one can apply the modified scattering theory to derive 
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phase-shifts corrected for the polarisation effect. The polarisation corrected 
phase-shifts corresponding to the potential of sma.ller range have contribu­
tions from much fewer partial waves than the total phase-shifts. However, as 
it becomes clear in the next section, the polarisation corrected pha.se-shifts 
may become complex also in the case of real core potentials Vc. It means that 
the simple effective range theory is not applicable and the exact treatment is 
unavoidable in this case. 

It is well known from the work1 of Holzwarth that there exists a tran­
sition point rt beyond which the relative wave function achieves a spherical 
waveform characteristic of the free motion with wave number k. Depend­
ing on the scattering energy E = k2 /2 and the polarisability a = P, the 
transition point rt = JT1k can be larger than the size ro of the neutral tar­
get. For example, in the ca.se of the electron-argon a.tom scattering for which 
a = 11.07 au and r 0 = 3.7 au, it can be shown1 tha.t at E=O.l eV scattering 
energy rt = 6.23 au. Between the transition point and the target radius the 
use of polarisation functions is unavoidable. Because of the long range nature 
of the polarisation potential, however, one should employ the polarisation 
functions also beyond the transition point. The simple consideration above 
makes it possible to develop a modified method by invoking properly treated 
polarisation functions which replace the spherical functions in the physically 
important region. 

The knowledge of the true scattering potential is of primary interest since 
it determines the over-all behaviour of the cross section. There are two ways 
to get information about the interaction acting between projectile and target. 
One is the direct method in which a priori model assumptions are introduced 
in potential forms with free parameters. The other is the inverse scattering 
method which neither makes pre-assumptions about the functional form of 
the potential nor contains fitting parameters. We shall a.pply the Newton­
Sahatier inverse scattering method2 as modified by Münchov and Scheid3 to 
obtain information about the electron-argon atom potential in the transition 
region. The inverse scattering method uses as input experimentally deter­
mined phase-shifts and gives as output the corresponding unique potential. 
The modified inverse scattering method3 has the basic assumption that the 
potential is known beyond a certain distance and it agrees with the reference 
potential. 

To our best knowledge the modified Newton-Sahatier inversion method 
with polarisation reference potential on the basis of complex Mathieu func­
tions has not yet been applied to atomic scattering processes. The modified 
method contains so called technical parameters which have been introduced 
in order to make the original method feasible to treat realistic cases. However 
the results are in principle independent of these parameters. To control this 
statement in the practice, in each case a consistency test is performed by 
recalculating the phase-shifts from the inversion potentials and comparing 
them with the input ones. 
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The organization of this paper is as follows. Section 2 contains the the­
oretical background with a brief discussion of the Mathieu functions which 
determine the asymptotical behaviour of the scattering solution. Then the 
modified Newton-Sahatier inversion method will be exhibited using polari­
sation potential as a reference potential. In Sect. 3 inversion examples will 
be presented using synthetic phase-shifts due to long-ranged (r-4 ) potentials 
and the realistic electron-argon atom scattering phase-shifts measured4 at 
scattering energy of 12 eV. A short summary is given in Sect. 4. 

2 Theory 

2.1 Polarisation-corrected phase-shifts 

Let us consider a charged particle scattered off a neutral atomic target with 
an electric dipole polarisability of a = P. The scattering process at the 
energy E = k2 /2 is determined by an effective ( dimensionless) potential 
U(p) = V(r)/ E which can be split into two parts as (p = rk) 

U(r) = Uc(r) + Uo(r), (1) 

a core potential Uc which has a range Po = rok approximately determined by 
the charge radius of the target, and the polarisation potential 

a/2 (k.f) 2 
Uo(p ~Po)=--=---Er4 p4 

(2) 

which, depending on the magnitudes of the polarisability and energy, may 
have a much larger range than the core potential. (Atomic units are used 
throughout the paper.) 

The scattering process is described by the radial Schrödinger equation 

(3) 

with the physical boundary conditions imposed on the wave function, 

where 'f/l denotes the total phase shift and Af stands for a normalisation 
constant. 

Beyond the core radius ro the wave function can be written1'5 '6 as 

with {h being the "polarisation corrected" phase shift. 
The functions IP~ 1 ) and IP~ 2 ) are two linearly independent solutions of Eq. 

(3) with potential (2) in the region p ~ po, and are fixed by the boundary 
conditions 
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4>~ 1 )(p --+ oo; k,!) cx sin(p - 17r /2 + 11? (k, /)), (6a) 

4>~ 2\p --+ oo; k,!) cx - cos(p- 17r /2 + 11?( k,!) ), (6b) 

4>~1)(p; k, f = 0) = pjr(p), 

4>~ 2)(p; k, f = 0) = pnr(p). 

(7a) 

(7b) 

Equations ( 4-6) imply that 

- • 0 TJ/- 0 / + TJ/ (8) 

where the polarisation corrected phase shifts br contribute appreciable only in 
those partial waves where the "core" potential U- Uo is effective (l :S lmax)· 
Since the core potential has the range r 0 , the pola.risation corrected phase­
shifts should be known only upto lmax ,..., kro if one wants to determine Uc (in 
the presence of the polarisation potential Uo ( r)) from the set bo, 61 , .. . brmu. 

The functions 4>~ 1 ) and 4>~ 2 ) which can be called the regular and irregular 
polarisation functions are related to the Mathieu functions of the second 
kind7 P/i) (i = 1, 2) in the following way: 1 

(9) 

By this relation the polarisation functions can be defined on the whole axis 
of r (0 :S r :S oo) corresponding to the various representations known for 
the Mathieu functions. One may use, for example, the ascending power series 
representation 

4>p)(r; k,!) = ..jk;pp) = ..Jk; t Cn(r)(rj/Tfk)±(r+2n) (lOa) 
n=-oo 

which is important in theoretical considerations, or the Bessel product series 
representation 

4>p)(r; k,!) = 5rP1G) = V7rkr/2 f (-l)nCn(r) (ir+n)((:))) ln(b), 
n=-oo (r+n) 

(lOb) 
which is useful for practical calculations. In Eqs. (10) lv and Yv are the Bessel 
and Neumann functions of order v, respectively, a (b) is the greater (lesser) 
of kr or f / r, Cn and r are the expansion coeffi.cients and the characteristic 
exponent, respectively. 

Inserting Eq. (lOa) into Eq. (3) with potential (2), one gets the recurrence 
relations 

for the expansion coeffi.cients Cn( r) = C-n( -r) which can be evaluated 
if r, the characteristic exponent, is known. The characteristic exponent r 
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can be determined by the condition that the system of linear homogeneaus 
equations ( 11) for the coefficients Cn ( T) has a nontrivial solution, that is, its 
determinant ( the Hill-determinant) Ll1 ( T) should vanish, 

Ll1(r) = 0. (12) 

This condition Ieads to an analytical expression (see. e.g. Ref. 8) for the 
calculation of T in terms of the Hill-determinant Ll1 ( r 0) belonging to 
r= 0: 

(13) 

Comparing the asymptotical form of the polarisation functions qj(i) given 
by Eqs. (6) with the power series representation of Eq. (10a), the following 
relation between the polarisation phase shifts TJ? = TJf(kf) and the charac­
teristic exponents T = r(kf) can be established 

T = [ + 1/2- 2TJ? j1r. (14) 

Insertionofthis expression into Eq. (13) leads to an equation from which the 
polarisation phase shifts can be calculated 

(15) 

A method for evaluating the Hili determinant and the expansion coefficients 
is given in the Appendix. 

From equation (15) it is clear that the polarisation phase-shifts TJ? are 
real only if 0 ~ Ll1 ~ 2. The conditions that TJ? be real are as follows: kf ~ 
0.69, 1.67, 3.25, 5.76, 9.10 in the partial waves l = 0, 1, 2, 3, 4, respectively. 
Holzwarth has also shown 1 that at low scattering energies ( or high partial 
waves), Eq. (15) provides the weil known effective range results7 

."p ~ 7r(kf) 2 /((21 + 3)(2/ + 1)(2/- 1)). (16) 

Since the polarisation phase-shifts TJ? corresponding to the background 
potential Uo ( r) may become complex but TJI = 61 + TJ? is always real for a real 
total potential U, the relation 

(17) 

must hold for energies below the inelastic threshold. Since TJ? ca.n be cal­
culated without using the polarisation functions, condition (17) provides a 
sensitive test for the calculation of the Mathieu functions when a.pplied to 
get the polarisation corrected phase-shifts 6, by matehing the logarithmic 
derivatives of the internal solution <Pf to the outer solution expressed by the 
polarisation functions as given by Eqs. (5). 

From the power series representation, E<LJ.!Oa), of the polarisation func­
tions one can expect that the values rt = V f / k play the role of a 'transition 
point' below which, for r < rt, the functions begin to oscillate hea.vily with 
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respect to the variable f jr and only beyond the transition point, for r > rt, 
they achieve a spherical waveform1. [Another physical meaning of 7't can be 
established from the relation: Vo(rt) = -E or Uo(Pt) = -1.] Therefore the 
use of the polarisation functions can be expected to be crucial in the region 
beween the transition point and the atomic charge radius rt ;::: r ;::: r0 . Nev­
ertheless, because of the long range nature of the potential U0 , the use of the 
polarisation functions is also unavoidable if rt < 7'o happens, i.e., when the 
transition point is smaller than the target radius. 

2.2 Inverse scattering at fixed energy 

We shall apply the modified Newton-Sahatier method to invert phase shifts 
into potential at fixed energy. The basic equation of the N ewton-Sabatier 
inversion method can be written in the form2 

00 

IPf (p) = 1Pf0 (P)- L C!'Lll' (p)ipf, (p) (18) 
1'=0 

with the matrix elements 

Lw(p) = 1P 1Pfo(p')IP~o(p')dp'jp'2 (19) 

where the functions ipf0 (p) and the reduced reference potential Uo are known 
and related to each other by the radial Schrödinger equation 

(20) 

For the elastic scattering treated in this work we assume that Uo(p) is 
a polarisation potential for p ;::: Po as given by Eq. (2). According to this 
assumption, the reference potential is most conveniently chosen as 

{ 
-(k/)2 / PÖ for p :S po, 

Uo(p) = 
-(kf) 2 /p4 for p;::: Po· 

The reference solutions ~Pfo satisfy also the boundary conditions 

(21) 

~Pf0 (0) = 0, and ~Pf0 (p--+ oo) = sin(p- ~~ + iJ?), (22) 

where the known reference phase-shifts are denoted by iJ?. 
The solution functions denoted by IPf (p) in Eq. (18) satisfy the Schrö­

dinger equation (3) with the boundary conditions (4). 
Newton2 has shown that the potential U(p) = V(r)/ E can be calculated 

from the equation 
U(p) = Uo(p) + ß.U(p), (23) 

where 
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2 d ~ U Uo U 
.!J.U(p) = --p dp L...J Cl tpl (p)tpl (p)l po 

1=0 

(24) 

The modification of the above procedure has been motivated by the need 
that the method should be applicable to realistic cases when only few mea­
sured phase-shifts are a.vailableo The modification makes use of the fact that 
in most cases of physics the potential U is known beyond a given finite dis­
tance, say r0 0 In the ca.se of electron-atom scattering this form is just the 
induced dipolepolarisationpotential -( al2r4 )o As proven by Münchow and 
Scheid3 the condition 

U(p) = Uo(p) for p ~Po (25) 

makes the solution for U(p) unique by selecting out of the infinite many 
solutions ofthe Newton-Sahatier method the only one possessing the physical 
asymptoticso 

By using Eqo (25), the solutions tpf ofthe Schrödinger equation (3) can be 
written for p ~ Po in terms of the regular and irregular Mathieu-function so­
lutions ofthe second kind q;p) and 4>~ 2 ) as shown in Eqo (5)0 The polarisation 
corrected phase-shifts 81 are the input quantities for the inverse problemo 

The solution of the Newton equations (18) proceeds in two steps after one 
truncates the summations of l to the first lmax + 1 terms where lmax is the 
largest contributing angular momentum of the input phase-shifts 810 First one 
uses equations (18) at N;?: 2 points p = p1,p2, 0 0 oPN with p; 2:: Po in order 
to determine the 2(lmax + 1) unknowns c1 a.nd Af by a.lea.st-squares methodo 
Then, with the repeated use of equations (18) for p < p0 one ca.n calculate the 
potential U(p) via Eqso (23) and (24)0 In practice, the procedure is preceded 
by a transformation of the given phase-shifts 81 t.o new phase-shifts 8(1 in 
order to reduce the problern to the case where the potential is simply the 
constant U (p) = -( k !)2 I PÖ for r ~ ro = Po I k 0 In this case the reference 
potential U0 becomes a constant and therefore one may use in Eqo (18) the 
simple Bessel functionso The usage of the complicated Mathieu solutions is 
thus limited solely to the calculation of the transformed phase-shifts 8f 0 

3 Results 

In all the following examples we set the reference potential U0 as given by Eqo 
(2) and explore the possibility of saving computational expenses by correcting 
the total phase shifts for the polarisa.tion interactiono The results obtained 
by inverting the small set of polarisation-corrected phase-shifts will always 
be compared with those having got earlier6 by inverting the much larger set 
of total phase-shiftso 
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3.1 An analytical potential model 

As a first attempt to apply the modified Newton-Sahatier method with po­
larisation functions to atomic scattering, let us consider the following model 
potential6'8 

Eu( ) _ V( ) _ -2r/2 1/2 '( -3r/2 -2r)/2 p - r - -e r- (r2 + 0.474)2 - z e - e r. (26) 

This potential has all the typieal features of eleetron-atom seattering poten­
tials; it has an attractive sereened Coulomb part of range r 0 "" 0.5 au, a 
long-range polarisation part, and a short-ranged absorption part to aeeount 
for possible inelastie proeesses. Let us study the scattering at the energy of 
E = 4.5 au = 122.4 eV (k = 3 au). Sinee a = P = 1 for the present model, 
rt = JT7k = 0.58 au"" ro so that the internaland transition regions overlap. 
Moreover, the input polarisation phase-shifts beeome eomplex in the partial 
waves l = 0, 1 sinee kf = 3 (see section 2.1) whieh means that the biggest 
eorrections for the polarisation effeet ean be expected in the first two partial 
waves. 

This is demonstrated in Table 1 which shows the various phase-shifts rele­
vant to the present ealculation. The total phase-shifts rn have been eomputed 
by matehing the asymptotieal wave function eomposed from a linear eombi­
nation of Bessel and Neumann functions to the inner solution at the mateh­
ing radius of 2.5 au. Those phase-shifts were used earlier6 to reeonstruet the 
complex potential given by Eq. (26). The input polarisation-eorreeted phase­
shifts c5fn listed in the fourth and fifth eolumns of Table 1 have been obtained 
by matehing the asymptotieal wave funetions, given by Eq. (5), to the inner 
solutions at a smaller radius of 2 au. Those 2 X 9 phase-shifts have been used 
as input for the present inversion ealculation which has been earried out us­
ing the code BICPOL11 . The output phase-shifts bfut shown in the sixth and 
seventh eolumns of Table 1 have been obtained from the inversion potential 
( dashed lines in Fig. 1) by solving the Schrödinger equation. The last two 
eolumns of Table 1 exhibit the differenees L11 = c5{n - o;mt whieh clearly show 
also the benefit of the new method. 

Figure 1 shows as full lines the eomplex inversion potentials obtained 
earlier6 by inverting the 2 x 30 total phase shifts 'T/1· Also shown are as 
dashed lines, the inversion potentials obtained presently by using the 2 x 9 
polarisation-eorrected phase-shifts c5fn of Table 1 as input data for the inver­
sion ealculation, outlined in seet. 2. It ean be seen from Fig. 1 tha.t the two 
inversion methods give pra.ctieally the same results although the input set of 
phase-shifts a.re quite different. The teehnieal parameters of the earlier ealeu­
la.tion have been lmax = 29, Pi = 35, 36, 37, ro = 2.5 au. Those of the present 
ealculation with polarisation functions are lmax = 8, Pi = 7, 7.5, 8, 7'o = 2 au. 
Contrary to the substantially smaller set of phase shifts, the polarisation­
eorreeted inversion method has resulted in almost the same eomplex poten­
tials as the eonventional method whieh employs a mueh larger set of (total) 
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Table 1. Total phase-shifts, Re 1/l and Im 'f/l, given by the long-range potential of 
Eq. (26). Polarisation-corrected phase-shifts, Re .s;n ancl Im .s;n, clefinecl by Eq. (5), 
used as input data for the inversion calculation. Polarisation-corrected phase-shifts, 
Re 8?ut ancl Im 8?ut, obtainecl back using the inversion potential shown by dashed 
lines in Fig. 1. Differences dz between input/output phase-shifts. 

Re 'f/l Im 'f/l Re ,s;n ImW Re .srut Im 8?'-'t Re dz Imdz 

0 0.5493 0.0410 1.3522 -1.6500 1.3520 -1.6500 0.0002 0.0000 
1 0.2916 0.0348 -0.4494 0.4915 -0.4494 0.4913 0.0000 0.0002 
2 0.1364 0.0219 -0.2647 0.0227 -0.2647 0.0226 0.0000 0.0001 
3 0.0673 0.0136 0.0072 0.0119 0.0072 0.0118 0.0000 0.0001 
4 0.0359 0.0083 0.0539 0.0059 0.0538 0.0056 0.0001 0.0003 
5 0.0207 0.0051 0.0285 0.0020 0.0284 0.0018 0.0001 0.0002 

6 0.0127 0.0031 0.0094 0.0005 0.0094 0.0004 0.0000 0.0001 
7 0.0083 0.0019 0.0027 0.0001 0.0027 0.0001 0.0000 0.0000 
8 0.0057 0.0011 0.0008 0.0000 0.0008 0.0000 0.0000 0.0000 

9 0.0041 0.0007 
19 0.0005 0.0000 
29 0.0001 0.0000 

phase-shifts. This result suggests the applicability of the method in other 
field of scattering theory as, e.g., in phase-shift analyses. 

3.2 Inversion of experimental phase-shifts of e-Ar scattering at 
E=12 eV 

The results of the preceding subsection are encouraging enough to apply 
the modified Newton-Sahatier method to invert polarisation-corrected phase­
shifts obtained from electron scattering experiments. As an example one 
chooses electron scattering by argon atom because the polarisability of an 
inert-gas atom is in general weaker than that of other systems. The polaris­
ability of the Ar-atom is f 2 = a = 11.07 au. 

The experimental phase shifts of e-Ar scattering at E=12 eV has been 
determined by Williams4 . In the second column of Table 2 the measured 
total phase-shifts 1J:xp are listed as given by Williams4 ( l :S 3) tagether with 
the effective range total phase-shifts of Eq. (16) for (~ 4) which were used 
also in the phase-shift analysis by Williams. The third and fourth columns of 
Table 2 contain the polarisation phase-shifts 11? which are complex for l = 0, 1. 
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Fig.l. Real and imaginary part (solid lines) of the inversion potential using in­
put phase-shifts generated by the 2 X 30 phase-shifts 'T/l listed partially in Table 1. 
Dashed lines exhibit the inversion potentials obtained by the 2 x 9 input polarisa­
tion-corrected phase-shifts 8/n listed in Table 1. 

This is because k = 0.94 au, f = 3.3 so that kf = 3.1 (see section 2.1). 
The input data for the inversion calculation are the polarisation-corrected 
phase-shifts 8{n = .";xp - TJ? which are listed in the fifth and sixth columns of 
Table 2. The last two columns ofTable 2 show the phase-shifts 8out calculated 
back from the inversion potential ( dashed lines) of Fig. 2. The differences 
between the input/output phase-shifts aresmall being in general one percent 
in the relevant partial waves, and this reflects the consistency of the inversion 
procedure. 

The inversion potential of the e-Ar scattering system is shown in Fig. 2 
at 12 e V scattering energy as dashed lines. Comparison is made with the 
inversionpotential (solid lines) determined earlier6 by using the full set of 30 
total phase-shifts of TJ~xp. The potentials compare weil showing the reliability 
of the present method. 

The inversion potential obtained from the total phase-shift without cor­
recting for the long range polarisation potential is per definitionem real. The 
inversion potential determined by the present method using a set of complex 
polarisation-corrected phase-shifts has a calculated imaginary part which is 
almost zero. This confirms the consistency of the present method since a scat­
tering potential at an energy below the inelastic threshold should be real. The 
very small amount of Im V can be considered to originate from the numerical 
instability of the inversion procedure involving polarisation functions. 

Let us discuss the main structures of the inversion potential shown in 
Fig. 2. It has an atractive part with a minimum value of about -2.8 au 
at a distance of r ~ 1.2 au. At smaller distances the potential is of re­
pulsive nature which can be interpreted as a ma.nifestation of the Pauli­
principle. These structures are very stable with respect to variation of the 
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Table 2. Experimental input phase-shifts 177xp of electron scattering by Ar-atom 

measured at energy E =12 eV by Williams (Ref. 4), corresponding polarisation 

phase-shifts 11?, and input polarisation corrected phase-shifts o;n. Recalculated 

phase-shifts 8/mt using the inversion potential shown in Fig. 2 as dashed lines. 

exp 
17! Re 11? Im 11? Reo;n Imli;n Re or"t Im lir"t 

0 -1.2180 -0.7854 1. 7350 -0.4326 -1.7350 -0.4047 -1.7427 

1 -0.6260 0.7854 -0.6757 -1.4114 0.6757 -1.3956 0.6618 

2 1.1910 0.5578 0.0000 0.6332 0.0000 0.6288 0.0035 

3 0.1180 0.1081 0.0000 -0.0099 0.0000 0.0722 -0.0005 

4 0.0441 0.0453 0.0000 -0.0012 0.0000 0.0316 0.0028 

5 0.0237 0.0248 0.0000 -0.0003 0.0000 0.0158 0.0009 

10 0.0032 0.0032 0.0000 

20 0.0004 0.0004 0.0000 

30 0.0001 0.0001 0.0000 

technical parameters which have been for the present case ro = 5.3 au, 

p; = 5.5, 6.2, 6.9, 7.6, lmax = 5 (dashed lines), and for the earlier calcula­

tion ro = 10 au, p; = 25, 26, 27, lmax = 21 (solid lines). 
From the earlier and present investigation of the electron argon-atom 

scattering one can confirm that these structures do really exist in the e-Ar 

system at the scattering energy of 12 eV. These structures are not artifacts 

due to neglect of proper treatment of polarisation functions as it has been 

surmised in Ref. 6 where the calculation of complex polarisation functions 

has not yet been possible. Thus the discovery of these structures can be 

considered as a model independent support derived from experiment4 for 

the pseudopotential theories12 which construct very similar potentials just 

obtained for s-, p-, d-wave electron scattering by atoms. The repulsive core 

appearing at short distances may be thus interpreted as a manifestation of 

the Pauli principle in coordinate space preventing the electron from merging 

in the electron-cloud of the argon atom. 

4 Summary 

The application of the modified N ewton-Sabatier inversion method3 has been 

extended to invert polarisation-corrected phase-shifts arising in electron scat­

tering by atomic target. It has been shown how the effect of the long range 
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Fig. 2. Inversion potentials obtained by using experimental phase-shifts derived 
from electron-Ar-atom scattering at scattering energy of 12 eV. 

polarisation interaction can be taken into account by using Mathieu function 
solutions. 

The method has been applied first to synthetic phase-shifts derived from 
known modelpotential with polarisation tail (r-4 ). Then the first application 
of the method to e-Ar scattering at E=12 eV has been carried out with the 
result of an effective potential which is atti'ftctive at small distances but has 
a repulsive core for r < 0.5 au (see Fig. 2), in a.ccordance with the Pauli 
principle and pseudopotential theories. 12 

The present method of the polarisation phase-shift calculation can be ap­
plied also in the case of phase-shift analyses of differential cross-section data. 
The resulting experimentally determined polarisation-corrected phase-shifts 
can subsequently be used in the inversion calculation as outlined in section 2 
to get model independent information about the electron-atom interaction in 
the core region. 

Acknowledgment This work has been supported by MTA/DFG (76/1995) 
and OTKA (T17179). 

Appendix 

Starting from the recurrence relation given by Eq. (11) the coefficients 
Cn(r) = C-n(-r) can be calculated by the continued fractions 

Cn/Cn-1 = -kf/[(2n + r) 2 - (l + 1/2)2 + kfCn+l/CnJ, (Al) 
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C_nfC-(n-1) = -kf /[( -2n + r) 2 - (l + 1/2)2 + kfC-(n+1)/C-nJ, (A2) 

by starting at large values of n = n0 for which 

(A3) 

and 
C-no/C-(no-1) = -kf/[(-2no + r) 2 - (l + 1/2)2]. (A4) 

The desired ratios for the coefficients can be calculated up to Cl/Co and 

C_tfCo. As normalization one fixes C0 (r) = 1. 

The Hill-determinant entering Eqs. (11) and (Al) can be evaluated by its 

noth approximate value L1n 0 as follows. One starts with the relations 

D} = 1, 

with 

to be used in the recurrence relations 

D~ = D~_ 1 - anan-1D~_ 2 , n = 3, 4, .. 

D; = D;_ 1 - anan-1D;_ 2 , n = 3, 4, .. 

(A5) 

(A6) 

(A7) 

(A8) 

from which the noth approximate value of the Hill-determinant can be cal­

culated as 
(A9) 
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Pion N ucleus Interaction from Inverse 
Scattering Theory and a Test 
of Charge Symmetry 
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Abstract. Phase shifts derived from experimental cross section data on the elas­
tic scattering of 11"+ and 11"- on low mass, zero spin and zero isospin nuclei are 
used to obtain model independent pion-nucleus potentials with a modified fixed 
energy inverse scattering formalism. No systematic difference between the 11"+ and 
11"- potentials suggests the absence of any charge symmetry violating effect in the 
pion-nucleus interaction. 

1 Introduction 

Studies of pion-nucleus interaction have been of much theoretical and exper­
imental interest [1,2]. They have been useful to obtain information on the 
isospin structure of the nucleus, to learn about the off-shell behaviour of the 
hadronic interaction or to study the applicability of multiple scattering the­
ories etc. Since the pions have zero spin, many of the complications of spin 
dependent effects present in the nucleon-nucleus interaction play no role pro­
vided that we are careful to choose nuclei also with zero spin. Pion-nudeus 
interaction also provides interesting possibility for studying the charge sym­
metry violation in strong interaction, since the pionic projectiles are available 
in the charge conjugate states of 1r+ and 11"- . 

In recent years a large amount of pion-nucleus data, both elastic and 
inelastic, has bcome available [3-6] in the literature. Most theoretical de­
scriptions of the pion-nucleus scattering have been formulated in terms of 
an optical potential. Such potentials usually contain several free parameters 
which are optimised to give the best fit to the scattering data. However, with 
such models, potentials as different as the Kisslinger potential [7] and the 
Laplacian potential [8] can provide equally good fits to the scattering data 
and to the pionic atom data. The inherent bias already built into the model 
from the beginning may mask the true information content of the experi­
mental data. Therefore, there have been several attempts to obtain model 
independent local potentials directly from the scattering data without the 
explicit use of a model for the interaction. 

Compared with the trivial problern of deducing the cross section from a 
given potential, the inverse problern of deducing the potential using the given 
cross section data is entirely nontriviaL Formal rnethods [9] have been known 
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for quite some time, but practical methods applicable to specific problems 
[10,11] were developed only in the early 1980's. Theinverse scattering problern 
is related to the spectral theory of a Sturm-Liouville eigenvalue problem. In 
connection with the Schrödinger equation two alternative procedures have 
been suggested; these correspond to taking either the energy or the angular 
momentum as the spectral variable. The first method developed by Gelfand 
and Levitan with its variant form due to Marchenko [12] yields the potential 
at a fixed angular momentum, when the phase shift for that particular partial 
wave is known for all energies from the scattering data. The second method 
relates to finding the potential from a set of partial wave phase shifts at a 
fixed energy. The formal solution to the problern has been given quite some 
time back by Newton [9], Sabatier [10] and others [13,14], however the first 
practical application of the formalism has been pointed out by Scheid and 
his coworkers [15,16] who derived the nucleus-nucleus potentials from the 
corresponding phase shifts derived with the use of some standard potentials. 
In our earlier works [17,18] we have discussed a modified form ofthe Newton­
Sahatier formalism for the calculation of the potential from the phase shifts 
at a fixed energy and have applied the method to the inversion of phases 
of elastic 1r--4 He scattering. The purpose of this contribution is to discuss 
briefly the general procedure of calculating potentia.ls for a set of phase shifts 
at a fixed energy, where both the phase shifts and the potentials may be 
complex. A novel method for extracting the partial wave phase shifts from 
the elastic differential cross section data is pointed out. The application ofthe 
formalism to the scattering of 7r± on 4 He and 12C is presented. The potentials 
for the 1r+ and 1r- with the I = 0 nucleus 4He is used to discuss the charge 
symmetry in strong interactions. 

2 The Inversion Procerlure 

The interaction of charged pions with the nucleus contains the Coulomb in­
teraction term Vc(r) which has an infinite range and a short range nuclear 
potential VN(r), the only restriction on the unknown part VN(r) being that it 
decreases faster than r-312 for large r [3], and, as we know, this is not a strin­
gent condition in the case of strong interaction potentials. Let us introduce 
a dimensionless coordinate 

p = kr = C~f) 112 
r, (1) 

where J.l is the reduced mass ofthe pion-nucleus system, and Eis the centre of 
mass energy. Assuming a spherically symmetric potential V(r) for the pion, 
the Schrödinger equation for the l'th partial wave can be written as 

p2 (:;2 + 1- U(p)) 1/Jt(P) = l(l + 1)1/Jt(p), (2) 
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where 

U(p) = V(r), V(r) = VN(r) + Vc(r), 
E (3) 

and 

~l(P) = nh(r), (4) 

where 1/J1(r) is the wave function for the l'th partial wave. Let ~~(p) be the 
wave function when the nuclear part ofthe interaction is switched off, so that 
~?(P) = F1(p) , the regular solution of the Coulomb problem. 

Outside the range of the nuclear interaction, i.e., for p > p0 the nuclear 
part of the potential may be neglected and then the wave function in this 
region can be expressed as a linear combination of the regular and irregular 
Coulomb wave functions F1(p) and G1(p) 

The unknown amplitudes A1 are to be determined as discussed below. 
The nuclear phase shifts 81 are extracted from the experimental cross section 
data after properly subtracting the Coulomb effects [18]. The phase shifts 
are, in general complex. 

Let us define a kerne! 

00 

K(p, p') = L Cf~l(P)~?(p'). (6) 
1=0 

It has been shown by Newton [19] and by Coudray and Coz [20] that, if one 
defines the potential a.s 

U(p) = Uc(P)- ~ dd [p- 1 K(p, p)], 
p p 

(7) 

the kerne! K(p, p') turnsouttobe the unique solution of the Gelfancl- Levitan 
linear integral equation 

K(p, p') = g(p, p') -100 dp"(p")- 2 K(p, p")g(p", p') (8) 

where 
00 

g(p, p') = L Cf~f(p)~f(p'). (9) 
1=0 

The wave function ~l(P) then satisfies the integral equation 

~l(P) = ~f(p) -1P dp'(p't 2 K(p, p')~f(p'). (10) 

Substituting K(p, p') from Eqn. (6) into the Eqn. ( 10) above, we get a set of 
couplecl equations 
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00 

q;z(p) = q;?(p)- L ci'LII'(p)q;l'(p), (11) 
1'=0 

where the matrix Lll' is given by 

(12) 

Equation (11) can be rewritten as 

00 

L [oll' Tz' (p )Al' + Lll' (p yrz, (p )bl'] = Fz (p), (13) 
1'=0 

where we have introduced a new set of coefficients bz = c1A1• Solving the set 
of linear equations ( 13) at two radial distances p = Pt, P2 ( > p0 ) provides the 
unknown coefficients Az and bz, and hence the coefficients ez. From these the 
kernel K(p, p) and the nuclear part of the potential are obtained using the 
equations (6) and (7) respectively. 

In potential problems the number of significant phase shifts is roughly 
L = kr0 . Normally the phase shifts become negligibly small for partial waves 
of value somewhat higher than L. In the work of May, Münchow and Scheid 
[15] summation series in Eqn. (13) is truncated at the value of l' = L for 
computational reasons, even though theoretically an infinite number ofpartial 
wave phase shifts contain all the required information for reproducing the 
true interaction. In this work, the eqn. (13) at more than two values of p 
are considered, which in effect over-determines the solution. The solutions 
are then optimised by a standard procedure described in Ref. [15]. However, 
in that procedure the total number of coefficients cz calculated from the 
equivalent of eqn. (13) is only equal to L. As a result, the series for K(p, p) 
of eqn. (6) is truncated at the value of l' = L. Unfortunately, even though 
the phase shifts for l > L may be negligible, the coefficients ez ( l > L) may 
not be small. This has earlier been demonstrated by Sabatier [20]. Thus the 
truncation of the series for K (p, p) at l = L will introduce a considerable 
amount of error in the value for the potential. In an earlier work [17] we 
have presented a prescription for calculating ez 's for l > L. Including more 
number of coefficients in the series sum for the potential naturally increases 
the accuracy in the reproduction of the actual potential. 

3 Phase Shifts and Potentials for 1r± 

The differential elastic cross section data for 7r±-4 He at several incident pion 
energies below the Ll(3, 3) threshold [21-24] have been analysed using the con­
formal mapping technique [18] to extract the partial wave phase shifts. The 
ambiguities of complex phase shift analysis are taken care of by minimising 
the chi-square for a fit to the differential cross section data. Phase shifts for 
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the first ten partial waves upto the angular momentum state L = 9 are used 
for the inversion. Partial waves for L > 9 are seen to contribute insignif­
icantly to the cross section in the energy region considered. The real and 
imaginary parts of the potentials for 7r+-4 He and 7!'--4 He at incident pion 
energies of 51 MeV, 60 MeV, 68 MeV and 75 MeVare shown in Figs. 1(a-d). 
Fig. 2 shows a comparison of the typical 7r+ - 12 C inversion potential at 50 
MeV with the corresponding Laplacian Potential. Details of the potentials at 
other incident energies and for other pion-nucleus system have been reported 
elsewhere [18,25]. 
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Fig.l. (a)-(d): Nuclear part of the '/l'±-4 He optical potential obtained by inver­
sion. The solid line and the dashed line represent the real part of the inversion 
potential for '/!'- and '/!'+ respectively. The dotted curve and the dash-dotted curve 
are twice the negative of the imaginary part of the inversion potential fou-- and 
'/!'+ respectively. Only one of the curves is shown when there is an overlap between 
the former two or the later two. 

As is seen from Fig. 1 and Fig. 2, the inversion formalism yields pion­
nucleus potentials which conforms to our knowledge about this interaction 
from earlier phenomenological models. However, the phenomenological and 
the inversion potentials differ in their details. General features seen in the 
pion-nucleus potentials for both 4 He and 12 C are: 
(i) the interaction is attractive at !arge radii, becoming repulsive at shorter 
distances. 
(ii) The strength of the attractive part of the real potential, as weil as imag­
inary potential increases with increasing incident energy. This conforms to 
the observed fact that the inelastic scattering is higher at higher energies. 
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Fig. 2. Figure 2. 7r+ - 12 C optical potential at 50 MeV. The solid curve is the real 
part of the inversion potential. The dashed curve is the real part of the Laplacian 
potential. The dash-dotted curve is twice the negative of the imaginary part of the 
Laplacian potential. The dotted curve is twice the negative of the imaginary part 
of the inversion potential. 

(iii) The radius of the repulsive core decreases with energy. 
(iv) The inversion potential is more spread out towards the nuclear surface. 
This could probably serve as a test for the inversion potential in the calcula­
tion of pionic absorption by nuclei, which is predominantly a surface effect. 

The oscillations in the potential at large distance could be due to the 
truncation of the infinite series of Eqn. (13), or may be ascribed to some 
physical phenomenon, similar to the Friede! oscillations in the effective elec­
trostatic interaction between ions in a solid [26,30]. A clear understanding of 
this feature is still lacking. 

4 Test of Charge Symmetry 

Owing to the existence of two pions of opposite charges, pion- nucleus inter­
action provides unique possibility of studying the charge symmetry breaking 
in nuclear interaction. The observed difference, if a.ny, between the Coulomb 
corrected cross sections for 7r+ and 71"- scattering on nuclei with zero isospin 
can be interpreted as a manifestation of different ma.sses and widths of ..1(3, 3) 
isobar states excited in the respective processes. Mastersou et al. [27] claim to 
have discovered such charge symmetry breaking effect in the elastic scattering 
of 7!"± on d, 3 He a.nd H. Their observed estimates of the splittings of ..1(3, 3) 
states are in suitable agreement with predictions of models [28] which take 
into account the different quark composition of ..1(3, 3) resonances. Neverthe­
less the evidence is not yet conclusive, there rema.in some doubt concerning 
the conclusion on charge symmetry breaking [29]. These doubts a.rise from 
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the fact that for any firm conclusion about charge symmetry brea.king one 
must calculate the hadronic amplitude with very high precision. The mat­
ter is complicated by the presence of Coulomb correction, for which doubts 
still exist regarding the accuracy of the methods in use. Since the model 
independent pion-nucleus potentials calculated in this work have taken into 
consideration the Coulomb effects, they provide us a. suita.ble tool to compare 
for any violation of cha.rge symmetry. From the Figs. l(a-d) it is noted that 
there is no significant difference between the hadronic part of the potentials 
for 7r+ and 'II"-. Even though we have not shown in the graphs the errors 
bars in the potentials due to the uncertainties in experimental cross section, 
at the present stage of the experimental accuracy, they are expected to be 
larger than any slight differences between the two potentials. However no firm 
conclusion can be drawn, since the effect of charge symmetry breaking is ex­
pected, any way, to be very small. Considering the smallness of the effects of 
the charge symmetry violation, it would have been appropriate to determine 
accurately the uncertainties in the potentials, so as to be able to specify 
within what limits charge symmetry is obtained. However, at the present 
state of the inverse scattering algorithm, there is no specified procedure to 
estimate the propagation of errors in the phase shifts from different partial 
waves to the final inversion potentials. Much more work in this direction is 
needed to get expected answers from such analyses. It has been shown by 
Khankhasayev et al. [29] that for a mass difference of 6 MeV and a difference 
in width of 8 MeV for L1++ and L1-, the difference between hadronic phases 
for scattering of 7r+ and 'II"- on 4 He at 75 MeV amounts to a mere 0. 72°. 
Such a difference in hadronic phases may be detected in phase shift analysis, 
if the differential cross section of elastic scattering is measured with 1-2% 
prec1s10n. 

In conclusion we can state that the present study gives us the confidence 
that the inverse scattering theory has reached a stage where it can directly be 
applied to complex physical systems to provide us with model independent 
interactions reliably. 

References 

[1] T. Erison and W. Weise: Pions and Nuclei ( Glarendon Press, Oxford, 1988). 
[2] W. Kluge, Rep. Prog. Phys. 54 (1991) 1251. 
[3] D. Mariow et al., Phys. Rev. C30 (1984) 1662. 
[4] M.W. Rawool-Sullivan et al., Phys. Rev. C49 (1994) 627. 
[5] T. Takahashi et al., Phys. Rev. C51 (1995) 2542. 
[6] B. BrinkmaUer et al., Phys. Rev. C44 (1991) 2031. 
[7] L.S. Kisslinger, Phys. Rev. 98 (1955) 761. 
[8] G. Faldt, Phys. Rev. C5 (1972) 400. 
[9] R.G. Newton, ,Scattering theory of waves and particles (McGraw Hili, New 

York, 1966). 



176 S. Jena. 

[10] K. Cha.da.n a.nd P.C. Sa.ba.tier, Inverse Problems in Quantum Sca.ttering Theory 
(Springer Verlag, 1989). 

[11] H.V. von Gera.mb (Ed.), Quantum Inversion Theory a.nd Applica.tions 
(Springer Verlag, 1994). 

[12] Z.S. Agra.novich a.nd V .A. Ma.rchenko, Theinverse problern of sca.ttering theory 
(Gordon a.nd Brea.ch, N.Y., 1963). 

[13] C. Coudra.y, Lett. Nuovo Cim. 19 (1977) 319. 
[14] P.J. Redmond, J. Ma.th. Phys. 5 (1964) 1547. 
[15] K.E. Ma.y, M. Munchow a.nd W. Scheid, Phys. Lett. B141 (1984) 1. 
[16] K.E. Ma.y a.nd W. Scheid, Nucl. Phys. A466 (1987) 157. 
[17] B. Deo, S. Jena. a.nd S. Swa.in, J. Phys. A17 (1984) 2767. 
[18] B. Deo, S. Jena. a.nd S. Swa.in, Phys. Rev. C32 (1985) 1247 
[19] R.G. Newton, J. Ma.th. Phys. 3 (1962) 75. 
[20] C. Coudra.y a.nd M. Coz, Ann. Phys. (N.Y) 61 (1970) 488. 
[21] F. Binon et a.l., Nucl. Phys. A298 (1978) 499. 
[22] K.M. Crowe et a.l., Phys. Rev. 180 (1969) 1349. 
[23] M.L. Scott et a.l., Phys. Rev. C9 (1974) 1198. 
[24] B. Brinkmoller a.nd H.G. Schla.ile, Phys. Rev C48 (1993) 1973. 
[25] S. Jena. a.nd S. Swa.in, to be published (Utka.l University Preprint No. 1-

Phy/96). 
[26] B. Apa.gyi, Private communica.tion. 
[27] T.G. Mastersou et a.l., Phys. Rev. C26 (1982) 2091. 
[28] R.P. Bickersta.ff a.nd A.W. Thoma.s, Phys. Rev. D25 (1982) 1869. 
[29] M. Kh. Kha.nkha.sa.yev, F. Nichitiu a.nd G. Sa.pozhnikov, Phys. Lett. B175 

(1986) 261. 
[30] W.A. Ha.rrison, Solid Sta.te Theory (McGra.w Hill, 1970). 



NN Potentials with Explicit Momentum 
Dependence Obtained from Generalized 
Darboux Transformations 

F. Korinek1 , H. Leeb 1 , M. Braun2 and S. A. Sofianos2 

1 Institut für Kernphysik, Technische Universität Wien, 
Wiedner Hauptstraße 8-10/142, A-1040 Wien, Austria 

2 Department of Physics, University of South Africa, 
P.O. Box 392, Pretoria 0001, South Africa 

Abstract. Using recently developed inversion techniques based on generalized 
Darboux transformations we constructed, in uncoupled channels, momentum de­
pendent potentials having a momentum independent term and one term linear in 
the square of the momentum. Varying the momentum dependent term of these po­
tentials we created via inversion sets of potentials that are phase equivalent up to at 
least 2 Ge V to the commonly used Nijmegen and Paris nucleon-nucleon potentials. 
These sets of potentials offer us the possibility to study the sensitivity of the triton 
binding energy on the momentum dependence of the NN-force. 

1 Introduction 

In recent decades much effort has been made to construct nucleon-nucleon 
(NN) potentials which can describe two-nucleon scattering data as well as 
many-body observables. In the absence of an appropriate solution within 
QCD, realistic NN-potentials arestill based on the meson-exchange picture. 
This theory, originally introduced by Yukawa [1], yields an explicit momen­
tum dependent NN-interaction which in configuration space is reflected by 
a nonlocality. Several potentials have thus been developed [2], [3], [4] which 
reproduce the NN scattering data in the elastic region, below E ~ 300 MeV, 
equally well. Nevertheless the momentum dependence of these potentials dif­
fers significantly in strength and range because the two-body data do not 
provide any information on it. 

The presence of nonlocality in the NN-force is important in studying 
many-nucleon observables where the off-shell characteristics of the momen­
tum dependent part of the potential are manifested. The interplay between 
the momentum dependence and the sensitivity of the observables to the off­
shell behaviour of the NN force cannot be studied by simply comparing the 
existing realistic potentials alone since they are only phase equivalent be­
low the pion production threshold and yield different phase shifts beyond 
E ~ 300 MeV which affect the results in many-body calculations. 

To investigate the effects stemming from the nonlocality itself we used 
recently developed inversion techniques [5], [6] to construct sets of potentials 
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having a different momentum dependence and are phase equivalent. up to at 

least 2 Ge V. The inversion scheme is based on Darboux transformations of a 

specific Sturm-Liouville equation [7], [8], [9] and offers the possibility to con­

struct various momentum dependent interactions in uncoupled channels [10]. 

We mention here that, to the best of our knowledge, there are no Darboux 

transformations dealing with the nonlocality of the NN-potential in coupled 

channels. 
Other mathematical solutions of the inverse scattering problern based on 

the Gel'fand-Levitan or the Marchenko integral equations were given in Refs. 

[11] and [12]. In recent years these methods have been used by the Harnburg 

group to construct NN interactions from experimental data [13], [14], [15], 

[16]. However the inversion scheme used generates only local, momentum 

independent potentials. Although the equations of Marchenko and Gel'fand­

Levitan have been generalized to include energy-dependent interactions [17], 

[18], [19], [20] they have not yet been applied to experimental nucleon-nucleon 

scattering data. 
In what follows we shall briefly recall in Sect.2 the generalized Darboux 

transformations and describe the method of const.ructing phase equivalent 

momentum dependent potentials. In Sect.3 we shall present and discuss our 

results for the three-nucleon binding energy. 

2 Formalism 

2.1 The Darboux transformation 

The recently developed inversion scheme based on Darboux transformations 

[5], [9], [21] can be used to construct potentials depending linearly on energy. 

Within this method one considers Sturm-Liouville equations of the form 

{ 
d2 >,2 1 } 

- 2 - ~ 4 + ~~: 2 - U(r) 'l/!(8, r) = 8 2h(r)'!j!(8, r), 
dr r~ 

(1) 

where U (r) is a local spherically symmetric potential, h( r) is a suitably chosen 

function, and >., K , and 8 are in general complex constants. For convenience 

we introduce the vectors 

XT = (W [1Jo(/,;),f~(al,r)]' ... 'W [1Jo(/,;),f~(etN,T)])' 
'Y - al 'Y - aN (2) 

<pJ(r) = (<po(ßl,r), ... ,<po(ßN,r)), 

and the matrix Y 

y ·- (Y, .. ) _ (W ['Po(ßi,r),/0 (aj,r)]) 
.- 'J - ß2 - (}2 ' 

' J 

(3) 
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where <po(ß;,r) and TJo(l,r) are regular solutions while f0 (o:j,r) is a Jost 
solution of the Sturm-Liouville equation (1) with the potential U0 (r) at the 
8-values { o:;, ß;}, i = 1, · · ·, N and I· The pairs { o:;, ß;} and the variable 1 
can be chosen arbitrarily. For the Wronskian the standard definition 

W [<p(r), f(r)] = <p(r)J'(r)- <p1(r)f(r) (4) 

is used. With these definitions a Darboux transformation is written [5] 

(5) 

It is Straightforward to show that ry2 (1, 1·) is also a regular solution of the 
Sturm-Liouville equation (1) with the potential 

d 1 d 
U2 (r) = Uo(r)- 2~-d f"i:T::\.-d ln (det Y) . 

r yh(r) 1· 
(6) 

From the asymptotic behaviour of ry2( 1, r) one obtains the analytic expression 
of the S-matrix associated with the potential U2(r) 

N 
s (k) = s (k) II (k- ß;)(k + o:;) 

2 0 i=l (k + ß;)(k- o:;) ' 
Im,ß; < 0, Imo:; < 0. (7) 

Here S0 (k) is the S-matrix corresponding to the potential U0 (r). The rela­
tionships (5) - (10) represent an inversion scheme. Its application requires 
the determination of a set of { o:;, ß}) values of the S-matrix (10) to describe 
the input data. Given the rational representation of the S-matrix (10) the 
potential is then evaluated via (6). 

2.2 Momentum dependent potentials 

The meson-exchange model yields an explicit momentum dependence for 
realistic nucleon-nucleon potentials. Frequently used NN-potentials, like the 
Nijmegen [2] or Paris [:3], include this dependence in the central component 
as follows 

2 2 

V(r, p 2 ) = V(a)(r) + ~ V(b)(r) + V(b)(r)~ . (8) 
m m 

Here, p is the momentum operator and m is the nucleon mass. 
The Darboux transformations can be applied to these potentials by choos­

ing in ( 1) K = 0 an d 
h(r) = -1 + UE(r). (9) 

Then 8 corresponds to a wave number, 1 = k, and we get the special case 
of a radial Schrödinger equation with a potential which depends linearly on 
the center of mass energy E 

h2 
V(r, E) = -U(r) + E UE(1·). 

m 
(10) 



180 Fo Korinek, Ho Leeb, Mo Braun and So Ao Sofianos 

The energy dependence is conceptually different from the momentum de­
pendenceo However, for two-body scattering there exists a one-to-one rela­
tionship between momentum and energy dependent potentialso This can be 
obtained if we use the off-shell transformation 

1 
1/;(r) = cP(r) J1 + 2V(b)(r)' (11) 

where 1/;(r) and cP(r) are the physical wave functions ofthe Schrödinger equa­
tion with momentum and energy dependent potentials, respectivelyo Since 
V(b)(r) vanishes asymptotically, 1/;(r) and cP(r) have the same asymptotic be­
haviour which implies that the phase shifts are the same for both potentialso 
Inserting (12) into the Schrödinger equation and comparing the correspond­
ing equations for the energy and the momentum dependent potentials one 
can easily derive the relations 

and 

m v(a)(r) ( V'"V(b)(r) ) 2 

U(r) = 1i2 1 + 2V(b)(r) - 1 + 2V(b)(r) 

2V(b)(r) 
UE(r) = 1 + 2V(b)(r) 

(12) 

(13) 

The inversion procedure which takes into account the momentum depen­
dent interaction requires firstly to fix the momentum dependent part V(b) ( r) 
and thus the function h(r)o The two-nucleon scattering data cannot pro­
vide any information about the momentum dependenceo Secondly, one has 
to define an arbitrary but reasonable potential U0 (r) and to determine the 
S-matrix S0 (k)o Theinversion scheme is then implemented by determining a 
set { ai, ßi}, i = 1, 0 0 0, N to reproduce the given S-matrixo As outlined above 
the evaluation of the potential U(r) = U2 (r) is straightforward and yields, 
via (13), the momentum independent term V(a)(r) of the NN-potential. 

3 Results and discussions 

Our main concern is to study the importance of the off-shell effects generated 
by the momentum dependent term of the NN-potential and not to create a 
new potential. For this purpose we apply our inversion scheme to data gen­
erated by realistic NN-potentials which enable us to consider phase shifts at 
energies far beyond the pion production thresholdo With this scattering infor­
mation and the method described in Secto2 various sets of phase equivalent 
potentials having different momentum dependencies can be determinedo 

In the present work we endeavoured to construct via inversion a set of 
potentials with different momentum dependencies which are phase equivalent 
up to at least 2 GeV to the Nijmegen potential [22]0 In these calculations we 
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used the momentum dependent part of the Nijmegen potential V(b)(r) but 
with an additional factor .A, ioeo, 

(b) ( ) (b) ( ) V>. r = A VNijm r o (14) 

For several .A-values the corresponding momentum independent term v}a)(r) 
has been obtained via inversion using the Nijmegen phase shiftso The results 
for the 1S0 channel are displayed in Figo1ao The mostevident difference be­
tween the potentials is the depth at r ~ 008 fm which varies systematically 
with Ao This reflects the interplay between the momentum dependent and 
momentum independent parts of the potentialso By increasing the strength 
of v}b)(r) the behaviour of v}a)(r) at short distances has less influence on 
the phase shiftso However to obtain reliable and stable potentials for r ;;:: Oo5 
fm one has to use phase shifts at even high er energies than 2 Ge V 0 When the 
momentum dependence becomes very strong (.A ;;:: 1.5) the potential term 

V}a\r) becomes negative in the vicinity ofthe origino This behaviour can be 
eliminated by including phase shifts at even higher energies (beyond 4 GeV)o 
Nevertheless this is not necessary since it plays no role as the wave function in 
this region is to all practical purposes zeroo We would like to remark that for 
r;;:: 500 fm we use v}a)(r) = V~ij~(r) in order to avoid numerically generated 
small oscillations in the asymptotic regiono 

Qualitatively similar results were obtained in our previous calculations 
based on the Paris 1 So potential. The results for the latter are displayed in 
Figo1b for comparison purposeso In this case the variation of the depth at 
r ~ 008 fm is even greater which is due to the fact that the Paris potential 
has a stronger momentum dependenceo The same .A-dependence is also found 
for the p-waveso This is shown in Figo2 where the results for the Nijmegen 
3P 0 and the 3 P 1 channels are giveno 

As already mentioned above the inverted potentials for different .A-values 
are phase-equivalent in the sense that the deviation of the phase shifts gen­
erated from the inverted potentials from that of the original Nijmegen ( or 
Paris) potential is less than 001° in the whole range from 0-2 GeVo These 
differences stem from the rational parametrisation of the S-matrix as well as 
from numerical noiseo 

To study the influence of the momentum dependence on the triton binding 
energy Et we employed in our calculations the Integro Differential Equation 
Approach (IDEA) [10], [23]0 The method, based on hyperspherical harmonics 
expansion, is fast and efficient in bound state calculationso For our studies it is 
sufficient to limit ourselves to a three-channel calculations including the 1S0 

and the 3 S1 - 3 D1 partial waveso Since at present no inversion method exists 
to determine momentum dependent potentials for coupled channels we used 
different well-established local nucleon-nucleon potentials for the 3S1 - 3 D1 
channel. More specifically we employed the Reid Soft Core (RSC) [24], the 
Super Soft Core (SSC) [25], the Gogny-Pires-de Tourreil (GPDT) [26], the 
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Fig.l. The momentum independent component V~a)(r) obtained by inversion and 
scaling of V(bl(r) for different A values for the 1So channel of the Nijmegen (a) and 
Paris (b) potential. The inserts show the AV(b)(r) . 
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Argonne (AV14) [27], and the local version ofthe Nijmegen potential (NIJM) 

[22]. 
The differences Et(A)-Et(A = 0.0) in MeV obtained for the triton binding 

energy using as input the v(t)(r) and the 1S0 phase shifts of the Nijmegen 

potentials and the aforementioned 3S1 - 3 D1 interactions are shown in Fig.3a. 

It is seen that the L1Et could be up to about 0.:3 MeV for all potentials 

used. The slightly different sensitivity of Et to the GPDT potential, comes 
as no surprise since this potential has a soft core which is responsible for 

the differences found in few-nucleon calculations as compared to the other 
potentials. The results obtained when the V(b)(r) and the 1S0 phase shifts are 

those of the Paris potential are shown in Fig.3b. The effects are similar to the 

ones obtained for the Nijmegen potentials. However the maximum deviation 
is of the order of 0.15 MeV with a tendency to become less at ).. ~ 1.0. 

lmportant differences in the triton binding energy can also be obtained 

by varying the range of nonlocality. This has been shown in our previous 

calculations [1 0] where by varying the range of V(b) ( r) we obtained differences 

L1Et up to 0.25 MeV. 
In conclusion we found that the uncertainty in the velocity dependent part 

and in the nonlocality range has considerable effects on the triton binding 

energy. These effects can be exploited to improve the existing NN interaction 

and thus reducing the discrepancies found between different potential models 

in describing nuclear data. 
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1 Introduction 

The first requirement in application of most global inverse scattering meth­
ods (1] seeking (local) interaction potentials from scattering data, is to specify 
the scattering phase shifts, Ot, or, equivalently, the S matrix, St = e2i6t. 

With fixed energy inverse scattering problems, knowledge of those phase 
shifts for all physical values of the angular momentum f allow application of 
the N ewton-Sabatier scheme as modified by Scheid and his collaborators (2]. 
Other approaches, such as the Lipperheide-Fiedeldey methods (3], require 
specification of the phase shift function, 8( A), for all values of the ( complex) 
angular momentum variable, A ( = f + 1/2), to provide unique determination 
of the Schrödinger potential. The starting point with all global inverse scat­
tering methods then is to specify those phase shifts, first at the physical values 
and then, by interpolation, for all values of the angular momentum variable. 
But no technique exists to do so unambiguously. Most commonly S matrix 
fitting procedures (to cross-section data) are used and usually, therewith, 
aspects of ill-posedness are ignored as are ambiguities due to local minima in 
the n-parameter hypersurface associated with such procedures. 

Our aim has been to obtain phase shifts by a more global means, namely 
by using the unitarity (generalized flux) theorem in application to real cases. 
Below the first nonelastic threshold and for the scattering of spinless particles 
(or if one simply ignores any spindependent attributes in the scattering), this 
theorem translates to an integral equation to determine the phase function 

(<p(B)) of the scattering amplitude f(B) = J i~ (B) exp(i<p(B)). A solution to 

that integral equation not only exists but also, under particular conditions [4], 
it is unique. Furthermore, with one of those conditions (hereafter defined as 
the Martin condition) being valid, an iterative method of Newton (5] gives 
that solution. When conditions for uniqueness and stability of solution by 
an iterated fixed point method are not met, a numerical procedure has been 
proposed [6]. But whatever be the chosen method of solution, the cross section 
data ;~ (B) must be known at all (real) scattering angles. With actual data 
sets then, interpolation and extrapolation must be used. 
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For scattering in which spin-orbit interactions are important, the gen­

eralized flux theorem leads to coupled integral equations for two unknown 

phase functions [7], and while there are still conditions for uniqueness of the 

solution as well as of the stability of fixed point methods of solution, those 

conditions are now rather complex. 

2 Generalized (unitarity) flux equations 

For simplicity, the spinless particle case is outlined herein with the spin­

~ particle scattering from spin 0 extensions alluded to in discussion. The 

differential cross section for the scattering of spinless particles is given in 

terms of a scattering amplitude, 

where x = cos(O), by 

f(x) = _!_A(x)eicp(x) , 
k 

d(J' 2 1 2 
dQ = if(x)l = k2 A (x) . 

(1) 

(2) 

The magnitude and phase of the scattering amplitude may be extracted from 

the measured differential cross section, under the constraint that the scatter­

ing function is unitary [1] as the generalized unitarity theorem (flux conser­

vation), 

Im[f(O)] =Im[f(kr,ki)] = ( 4~) j f*(q,kr)f(q,ki) dflq, (3) 

leads to an equation that specifies the phase in terms of the complete (0 to 

180°) cross section, viz. 

sin1p(x) = JJ A(y)A(z)cos[!f'(Y)- 1,0(z)] dy dz . 
27rA(x)(1- x2 - y2- z2 + 2xyz)l/2 (4) 

Therein the region of integration is the interior of an ellipse. From the scat­

tering amplitude, the scattering function is obtained by 

St - 1 = e2i 6t - 1 = ik 1'1r f( 0) Pt( 0) sin( O)dO , (5) 

which in turn identifies the phase shifts, 8t. 

Usually, solutions of ( 4), or its equivalent, have been sought with iteration 

schemes based on the contraction mapping principle [1), [4). That approach 

also defines an existence condition for a solution and for its global unique­

ness as well. In application though we have found difficulties with it. The 

physical circumstances considered [8] did not meet the domain criteria and 
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the solutions found were not stable. Thus we considered a modification of the 
Newton iteration method. 

In brief, our modified Newton method (8] considers an operator F acting 
on functions t.p according to 

F[ l = . ( ( ).) _ J J A(y)A(z) cos[t.p(y)- t.p(z)] dy dz 
i.p Slll '.p X ( )( 2 c1 2 )1/c> 27r A x 1 - x - y~ - z + 2xyz ~ 

(6) 

The Frechet derivative F' of F is given by 

F~(h) = cos(t.p(x))h(x) 

+2 J (! H(x, y, z) sin[t.p(y)- t.p(z)]dz) h(y)dy . (7) 

Then, if one can solve the linear functional equation, 

(8) 

for t.p(n+l), and ifthe sequence t.pn converges, its limit is a solution of (4). 
The scattering amplitudes for a spin-~ particle elastically scattered from 

a spin-0 target have the form 

fr'r(k',k) =X~' (g(B) + (}" · n h(B))xr, n= 
k X k 1 

lk X k'l ' (9) 

where Xr are Pauli spin functions with spin projections T = ±1, and k, k' are 
the incoming and outgoing momenta of the projectile (lkl = lk'l = k). The 
non-spin-flip and spin-flip amplitudes, g(B) and h(B) respectively, are defined 
conventionally by the partial wave expansions, 

1 00 

g(B) = 2ik 2...)(f+ l)SH +fSt-- (2/ + l)]Pt(cosB), 
f=O 

1 = 
h( B) = 2k 2:.:: ( Sf+ - St-] Pi ( cos B) . 

l=l 

(10) 

Therein f± denote the values j = f ± 1/2 and the expansions can be re­
cast in terms of scattering phase shifts since they are given by DH(k) = 
(1/(2i)] ln (SH ( k)). It is convenient to choose spin quantization parallel to 
n as then transversity amplitudes, 

J±,±(B) = A±(z) exp(i~h) = g(B) ± h(B), Jf',±(B) = 0, (11) 

have magnitude functions, A±(x), [x = cos(B)], that can be determined from 
the unpolarized differential cross section d(J" / dQ and the polarization P( B) 
smce 

2 d(J" 2 2 ( 2Re(gh*) ) 
A±(x) = df2(1 ± P) = (lgl + lhl ) 1 ± (lgl 2 + lhl 2 ) . (12) 
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Then if A± ( r) can be specified for all scattering angles, the unitarity condi­
tion(7] constitutes two coupled equations for the phase functions <!>± ( B). Mar­
tin conditions exist again but not only are they now quite complicated (7] but 
also they are rarely satisfied by actual data. Nevertheless the Frechet deriva­
tive approach may be used still to give solutions. 

3 Natural ambiguities of the phase functions 

Without spin-orbit coupling, the natural ambiguity of a phase function is 
its complex conjugate, cp'(B) = 7r- cp(B). That is a special case of the set 
possible with spin-orbit coupling as are considered in the following discussion. 
If the uniqueness conditions are satisfied, the phase function solution of the 
problern specified by the data set ( ~~ (B), P(B)) is <J>(l) = {<P~\B), <P~\B)}. 
There is also then a solution to the 'mirrored' problern specified by the data 
set {1~ (B), -P(B)) and which we designate by <Jj(ll. 

Natural ambiguities to those solutions exist, identified by application of 
the complex conjugate, the Minami, and the combination of the complex 
conjugate and Minami transformations. The complex conjugation transform 
equates to changing the signs of all of the phase shifts, Oe±, one obtains from 
the phase functions <Jj(l) ( and from <J>(l) for the 'mirrored' problem) which 
are given by 

( <!>(2)) ( - <J;(l)) (2) + 7r -
<I> = (2) = -(1) ' cp_ 7[-iP+ 

(13) 

and similarly for &<2). The Minami transform is effected by an interchange 
of phase shift sets by Oe± <::> D(l+l)'f or by specification of the new phase 
functions, <J>(3 ), by 

(14) 

and similarly for <f>( 3 ). A fourth possible solution results from the combination 
of transforms whence we find the phase functions <J>( 4) ( and similarly cf>< 4l) 
from 

(
<!>(4)) ( -<P(l)_g) (4) + 7r + 

<I> = (4) = (1) . 
<!>_ ?r-<!>_ +B 

(15) 

These natural ambiguities need be understood since the combination of 
complex conjugation and Minami transformation gives a new phase function 
set <!>~) and <f>~l for the original and the mirrored clata sets respectively, and 
hence different sets of phase shifts to fit measured data equally well. 
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4 Application to nucleon-a scattering 

Our interest with low energy n - o: and p - o: clata stems from the fact 
that much of it lies below the first nonelastic scattering threshold (24 MeV) 
ancl for which, therefore, the physical S function is unitary. The nucleon-o: 
scattering system below threshold is of interest also given the simplicity one 
assumes with the target structure. The closed s-shell configuration one favors 
to describe the alpha particle, encourages belief that the inherent 5-body 
problern can be assessecl in diverse ways, ranging from its representation by 
effective reallocal ancl phenomenological optical modelpotential to treatment 
as a microscopic optical model interaction defined by folcling an appropriate 
effective two-nucleon (N N) g matrices with the density matrix elements of 
the alpha particle. 

4.1 Ignoring spin-orbit coupling 

The cross-section clata at various energies below threshold from neutron-o: 
scattering have been analyzecl using interpolated and extrapolatecl values to 
specify the magnitucles A( B) at all scattering angles [6] for use in solving the 
phase function equations. The results for four energies are shown in Fig. 1. 
These scatterings of neutrons from o: particles below threshold do not satisfy 
the Martin constraint condition. Such is only met if the unclerlying interaction 
is very weak. This is demonstrated in Fig. 2 wherein the Martin conclition, 

(1- 0.79)~ ::; M(x)::; 0.79 (16) 

where 

M(x) = j j ~~~1~~) [1- x2 - y2 - z2 + 2xyzr~dy dz, (17) 

for the scattering of 14.9, 16.4, and 23.7 MeVneutrons from alpha particles 
are shown by the solid, small dashed, and long dashed curves respectively. 
They all peak in the vicinity of x = -0.3 and at a value clearly in excess 
of the Martin limit of 0.79. In fact, that value is exceeded over most if not 
all scattering angles (1 2 x 2 -1). But by using our method with Frechet 
derivatives to linearize the problem, by iteration we have found convergent 
solutions which are displayed in Fig. 3. Therein the converged phase functions 
for the 14.9, 16.4, 20.0 and 23.7 MeV neutron-o: cross sections are displayecl 
by the solid, small clashecl, clotted ancllong dashed curves respectively. From 
these phase functions, via Legendre integrations we find phase shifts that 
produce excellent fits the measurecl cross-section clata [6]. 

To achieve stable results, however, it was necessary to apply the GCV [9] 
process to minimize fluctuation of the results between iterations; fluctuations 
that could occur as the complex conjugate phase function intersects with the 
desired solution and the numerical procedure may track from that desired 
solution to its complex conjugate at scattering angles near to the intersection 
point. 



192 H. Huber, D. R. Lun, L. J. Allen, and K. Amos 

80 120 
ec.m. (deg) 

Fig.l. The neutron-a cross sections at 14.9, 16.4, 20.0, and 23.7 MeV and the 
results from our unitarity analyses. The cross sections have been enhanced by factors 
of 30, 10, 5 and 1 respectively for visualization. 
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Fig.2. The functions M(x) as given by Eq. (17) for 14.9, 16.4 and 23.7 MeV 
neutron-a cross sections. 
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Fig. 3. The phase function solutions for neutron-a scattering derived using the 
cross sections in Fig. 1 and ignoring spin-orbit coupling. 
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4.2 Including spin-orbit coupling - 1 MeV case 

For convenience, to specify the data at all scattering angles we have used the 
phase shifts for 1 MeV neutron-a scattering as given by the optical model 
analysis that was made by Satchler et al. (10]. Not only does this give a good 
fit to the actual measured data but also provides us with the 'exact' phase 
functions agairrst which we can compare the results of our unitarity based 
analysis. 

Our first ( of two) guesses for the initial phase functions was to assume 
the linear form (in x = cos(B)) and the Frechet solutions we identify as cp(l). 

From those phase functions, by Legendre integration of the associated com­
plex scattering amplitude, we obtained (recalculated) phase shifts that agree 
extremely well (to 1 part per thousand) for the important low f partial waves 
of the optical model calculation values of Satchler et a/.[10]. The initial phase 
functions and the final results are displayed in Fig. 4 by the dashed and the 
solid curves respectively. The changes wrought by the iterative method of SO­

lution are significant as seen by the variation in cross section and polarization 
for this scattering given in Fig. 5. Therein the cross section and polarization 
shown by the dashed curves are the result of using the phase shifts extracted 
from the initial phase function guess and used in the partial wave summa­
tions, while those displayed by the solid curves are the results found using 
the final (4th) iterate. The latter coincide very precisely with the calculated 
results of Satchler et al. (10]; the input to our calculations. 

The second starting phase guess functions were those given by the com­
plex conjugation and Minami transformation of the initial guesses above. The 
solution for the phase functions are defined as cp~). The phase shifts then ex­
tracted by Legendre integration of the resultant scattering amplitudes also 
compare accurately (for low f) with the complex conjugated, Minami trans­
formed set of Satchler et a/.[10]. In Fig. 6, the + and - phase functions are 
shown in the top and bottom segments respectively. The initial guess varia­
tions are shown by the dashed lines while the results of our calculations are 
shown by the solid curves. The symmetry lines between the two solution sets 
are shown by the small dashed curves. Those symmetry lines also pertain to 
the two other possible solutions of the coupled nonlinear equations for the 
phase functions. In this case, the solutions cp~) and cp~) intersect near 25° 
for the scattering angle at which point numerical problems with ambiguity of 
solution could result. With GCV smoothing between iterations(9], the pro­
cess converged to the 'exact' results. There is no such concern with the cp_ 
phase solutions though as the trial guesses and final results for cp~) and cJ.i~4 ) 
do not cross. 

Two more phase functions for the scattering amplitudes of the data set 
{i~ (B), P(B)} are associated with the phase functions q.>( 2) and 1])(3 ), and 
which are given by the complex conjugate and the Minami transform of the 
solution with the mirror problem data set {i~ ( B), - P( B)}, i.e. cf>C 1 l, respec­
tively. The mirror problem was solved using the samelinear initial conditions. 
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Fig. 4. The initial and final, .p(l), phase functions for 1 MeV neutron-a scattering 

and based upon the optical potential 'data' of Satchler et al. [10). The initial guess 

functions are displayed by the dashed curves while the solid curves portray the 
results of our calculations. 
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Fig. 5. The differential cross sections (top) and polarizations (bottom) for 1 MeV 
n - a scattering as calculated from the phase shifts specified by using the initial 

guess (straight line) phase function ( dashed curves) and from the phase shifts found 

using the phase function solution of the generalized flux equation (solid curves). 
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The result is quite different from the phase function found when either the 
complex conjugation or the Minami transform is made upon the Satchler 
phase shifts. In those cases the phase functions we identify as cP( 2) and cP(3) 

respectively. Then by using these phase functions for the 'data' set, a quite 
distinctive set of phase shifts result, which when used in the appropriate par­
tial wave summations give equivalent fits to the cross section and polarization 
of the optical potential calculation. The inversion potentials associated with 
each set will be quite different then as well . 
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Fig. 6. The ( +) (top) and (-) (bottom) phase solutions of q>(l) and q>( 4) as labeled. 
The starting (guess) phase functions are portrayed by the dashed lines while the 
final solutions are shown by the solid curves. 
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Abstract. We demonstrate that the application of the Supersymmetrie (SUSY) 
transformation to a periodic potential in one dimension, which creates a bound 
state below the lowest allowed band, results in the unexpected phenomenon of 
potential reversal. This does neither alter other characteristics of the spectrum nor 
does it result in a reflection of Bloch waves. 

1 Introduction 

The reflectionless potentials of the soliton type are widely known (Lamb 
1980). One way to create them is by inserting abound state in the spectrum 
with the aid of the inverse scattering formalism (Chadan and Sabatier 1977, 
Zakhariev and Suzko 1990) or using supersymmetric (SUSY) transformations 
(Witten 1981, Andrianov et al. 1984, Sukumar 1985, Baye 1987, Andrianov 
et al. 1993) 

The inverse problern has been considered in the past by various au­
thors (Levitan 1984, Newton 1985, Firsova 1985, Marchenko (1977), Firsova 
1987, Roberts 1990) in order to study impurities in periodic potentials. Za­
khariev and Pashnev (1994) shown that adding a soliton-like potential in 
these systems will not necessarily result in transparency, as the boundaries 
between allowed and forbidden bands will be distorted by bumps in the re­
gion where the potential is acting. These bumps act as effective potential 
barriers that give strong reflection. 

For a periodic potential there exist bands in the spectrum that allow the 
propagation of Bloch waves. One can define analogues of the exponential and 
sinusoidal solutions for the free particles. From their linear combinations one 
can construct general solutions on any finite segment of the system. Such so­
lutions, for different periodic potentials on distinct intervals, can be smoothly 
matched with the solutions for an arbitrary potential (Zakhariev 1992). It is 
natural that a partial reflection of moving Bloch waves at those matehing 
points will occur. It is possible that bound states under each allowed band 
could be generated by an arbitrarily small attractive potential perturbation, 
such as it is the case of free motion on the whole axis (Zakhariev Pashnev 
1994). Similarly, we expect that abound state could be generated over each 
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allowed band by an arbitrarily small repulsive addition to the potential and 
thus creating 'overturned potential wells' pressed into forbidden bands. 

In this work we want to create a bound state in the lower forbidden band 
of a periodic potential while keeping the band structure unaltered. For this 
we shall employ two types of periodic potentials the first being the so-called 
Dirac comb which is a sum of 8-barriers, 

00 

Vo(x) = L va8(x- na), (1) 
n=-oo 

and the second of the form 

(2) 

where n is an integer and Vn is chosen to normalize the potential in the 
range [-0.5, +0.5]. Thus the limit of this potential for n --+ oo is the Dirac 
comb with vo = 1, We shall study the behaviour of these one-dimensional 
potentials upon application of the SUSY transformation. 

2 Formalism 

With the aid of the SUSY approach a bound state can be inserted in the 
spectrum which conserves the asymptotic behaviour of Bloch waves. The 
SUSY method has been described elsewhere (Witt.en 1981, Andrianov et al. 
1984, Sukumar 1985, Baye 1987, Andrianov et al. 1993) and t.hus we shall 
only briefiy recall it here for convenience and to demonstrate our points. In 
this method the initial hamiltonian H is factorized 

d2 
H = A+ A- + c =- dx 2 + Va(x), (3) 

where f is the so called factorization energy. In this expression, A- is a first 
order differential operator, 

d 
A- = -- + W(x), 

dx 
(4) 

A+ is its Hermitian conjugate, and W(x) can be obtained by solving the 
equat.ion 

(5) 

Here 'lj;- is the solution of the Schrödinger equation for the hamiltonian H 
at the energy f with 

d d 
A- = --+ -ln'lj;-. 

dx dx 
(6) 

The solutions for the supersymmetric partner H1 = A- A+ + f can be found 
by employing a Darboux transformation (Schnizer and Leeb (1990) ), 
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d2 d2 
H1 =- dx 2 + Vo(x)- 2 dx 2 ln1f'-. (7) 

Indeed, let 1/Ji; be an eigenfunction of Hat the energy E. Then 1/Ji:::::: A-1/'i; 
is the solution of the Schrödinger equation with H 1 at the same energy 

At the factorization energy f the solution 1/'+ can be obtained by solving the 
first order differential equation 

(9) 

which is equivalent to 

(10) 

Let the factorization energy f < E 1 , where E 1 denotes the lower border of 
the first allowed band of H. Choosing 1/'- to have no knots and to diverge 
asymptotically, then 1/'+, according to (10), does not possess knots and van­
ishes as lxl -+ oo. Furthermore, it is easy to see that for all energies E > E 1 

the solution 1f'i behaves at large x as a freely propagating Bloch-wave i.e. 
without reflection. In other words the SUSY transformation H -+ H 1 adds 
a ground state to the spectrum of the periodic potential without affecting, 
except from a phase change, the propagation of Bloch-waves. 

From the expression for the transformed potential one can see the reversal 
of the potential, 

(11) 

where we have used the expression for [ 1/'- ( x )]" obtained from the Schrödinger 
equation. We notice that V0 finally appears with a minus sign. In our case V0 

is the comb of the singular 8-functions and therefore the remaining terms, 
finite at all x, are not sufficient to compensate for the reversal of the 8-peaks, 

It should be emphasized that Eq. (11) is valid also for an arbitrary one­
dimensional potential. However, the sign change of V0 could be hidden by the 
additional term, thus our model reveals the peculiar reversal effect resulting 
from the addition of a bound state to the spectrum. 

It is noted that the SUSY transformation keeps unaltered the absolute 
value of the reflection and transmission coefficients. Indeed, let 1/'i; ( x) be a 
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solution of Schrödinger equation at energy E obeying the asymptotic condi­
tion 

1/Jß(x) "'exp( -ikx) + r(k) exp(ikx), X---l-00. (13) 
From this one can easily obtain the asymptotic expression for the solution 
coresponding to the transformed potential 

where 

and 

1/J~(x) = -[1/Jß (x)]' +[In 1/J- (x)]'1/;ß (x), 

1/J~(x) = exp( -ikx) + ll:- ~kk r(k) exp(ikx), 
ll:+z 

(14) 

(15) 

X_. 00 (16) 

where we normalized 1/J~(x) to a unit amplitude of the wave incident from 
the right. 

3 Results 

The above formalism has been applied to the periodic potentials described 
by Eqs. (1) and (2) and the results obtained are given in Fig. 1 and Fig. 2 
respectively. 

In Fig. 1 a) the effects of SUSY transformation that creates a bound 
state in the lower forbidden band for the Dirac comb consisting of potential­
barriers (spikes) are shown. The potential strength was taken to be v0 = 
1 and the bound state energy was chosen to be [; = -1 in dimensionless 
units. It is seen that the '8-barriers' turn into '8-wells'. The cusps in the 
potential are due to the derivative terms of Eq. (12). The weil between 0 and 
1 creates a bound state at the given energy. The corresponding bound state 
wave function is also shown. Such a reversal of the 8-barriers by creation of 
abound state conserves the reflection characteristics of the system. 

The dependence of such transformations on the sign of the potential bar­
rier v0 is shown in Fig. 1 b ). The strengthin this case is chosentobe v0 = -0.5 
while the bound state energy is & = -1. The potential is reversed and the 
bound state wave function is spread over an extended region in contrast with 
the previous case where the wave function is rather localized close to the 
binding weiL 

In Fig. 2 we consider periodic potentials of the form (2) with different 
values of n. The strength Vn is chosen to normalize the potential in the range 
[-0.5, +0.5). In Fig. 2 a) the transformation of the initialpotential with n = 1 
and with & = -1 is considered. It is seen that the reversal in the potential 
results in this case in a phase shift of the periodic potential. In Fig. 2 b) 
we present the results with n = 8. The increase in n results in a potential 
repulsion concentrated at specific points. The SUSY transformation results 
in a reversal of these repulsive pulses. In Fig. 2 c) n is chosen to be n = 32 
and the repulsive pulses become narrower resembling the spikes of the Dirac 
comb but with limited strength. 
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Fig. 1. The modified potentials Vi ( x) ( --) obtained by inserting a bound state 
at [ = -1 in the lower forbidden band of a Dirac comh and by applying a single 
SUSY transform: ( a) repulsive h-wells with vo = + 1 (b) attractive h-wells with 
vo = -0.5. The bound state wave functions are indicated by - ·- · -. 

4 Conclusion 

The use of SUSY transformations in one- dimensional periodic structures 
could result in a potential reversal which is a rather general phenomenon. 
This has been explicitly demonstrated by using two examples, namely, the 
Dirac comb potential and periodic potentials constructed from even powers 
of cos( 1rx) inserting a bound state below the lowest forbidden band of peri­
odic structures without altering the reflection characteristics of the system. 
So, impurities introduced into a periodic potential which, do not generate 
reflection of the Bloch waves can have the drastic changes in the potential. 
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Abstract. We present an improvement of the Kato-Putnam theorem. We apply 
this to the spectral theory of some classes of generalized differential operators. 

1 Introduction 

For the spectral analysis of self-adjoint operators on a Hilbert space, methods 
relying on the positivity of a commutator are some of the strongest tools. 
When trying to show that an operator H has no singular spectrum (in some 
region of the real axis), one is led to look for a second operator A such that 
the commutator is positive in a suitable sense. There are two main versions 
of this strategy, which we review briefly. 

First, in the Kato-Putnam approach (Kato 1968, Putnam 1967), B has 
tobe positive and injective (this isarather mild positivity assumption). On 
the other hand, A has to be H-bounded. As it is well-known, this limits 
drastically the range of applications. Another shortcoming is the globality: 
one gets purely absolutely continuous spectrum on the whole real axis, hence 
operators which also have some singular spectrum are out of reach. 

A partial improvement is the second approach, due to Mourre (Mourre 
1981, Amrein, Boutet cle Monvel, Georgescu 1996). Here regularity assump­
tions are not longer made on A, but on the commutator B = i[H, A] (it is 
sufficient that it be H-bounded). This will work in more realistic situations, 
because cancellations usually appear when commuting. There is also a con­
dition on the second commutator [B, A], which we will not discuss here. Let 
us now state the positivity assumption. A strict Mourre estimate must hold: 

E(J)i[H, A]E(J) ~ aE(J) (1) 

where Eis the spectralmeasure of H, a a strictly positive constant and J a 
Borel subset of IR. The main consequence is that the spectrum of H in J is 
purely absolutely continuous. 

A great advantage is the fact that ( 1) is local on the spectrum of H. A 
second one is the following extension: consider the weaker form of ( 1) where 
a compact operator is added in the right-hand side (this is the full Mourre 
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estimate, much easier to check in concrete cases). The only new fact in the 
conclusion is the possible appearance in J of some discrete spectrum. The 
main difficulty in this version is to get the strict positivity. Anyway, this does 
not contain the Kato-Putnam theory. 

Our intention is to present a commutator criterion which is in somehow 
intermediate between those described above. We call it the method of the 
weakly conjugate operator in agreement to the fact that Mourre's approach is 
sometimes called the method of the conjugate operator. The term "weakly" 
refers to the positivity requirement. This point of view, we are closer to the 
Kato-Putnam theory, on which it improves. Unfortunately, our analysis is also 
global. As we explained, the main point isthat we impose regularity on "the 
weakly conjugate operator" A (which may be quite singular in applications) 
only in an indirect way, making assumptions on the commutators [H, A] and 
[[H, A], A]. 

The abstract results are exposed in the second chapter. A moreprimitive 
version is tobe found in (Boutet de Monvel, Kazantseva, Mantoiu 1996), to­
gether with applications to Schrödinger operators (which can be recovered as 
very special cases ofthe chapters 3 and 4). In (Boutet de Monvel, Kazantseva, 
Mantoiu 1996) a technical point caused some problems: We had to impose 
that i[H, A] be H-bounded in operator sense, and this was quite disagree­
able in applications, where it is more natural to consider boundedness in 
form-sense; this was almost catastrophic for second-order elliptic operators. 
In order to remedy this, we are obliged to adopt the strategy indicated in 
(Boutet de Monvel, Georgescu 1992). Namely, in the firststage (Theorem 2.1) 
we deal with the case of a bounded operator R. The case of an unbounded 
operator is dealt with by transferring informations between the operator we 
study, Hand its resolvent R = (Ao- H)- 1, which must be bounded. This is 
how we get Theorem 2.2 which only works if Ao is real, so we have to impose 
that H has a spectral gap. This is verified in most of the applications we have 
in view. The proof of Theorem 2.1 is another version of the so called "method 
of differential inequalities", also used by Mourre. In fact, in contrast with the 
approach in (Boutet de Monvel, Kazantseva, Mantoiu 1996), we adopt the 
more refined techniques developed in (Boutet de Monvel, Georgescu, Man­
toiu 1993), (Boutet de Monvel, Georgescu 1992) (see also (Amrein, Boutet 
de Monvel, Georgescu 1996)), in order to allow some improvements in our 
main estimates. We also give a result (Proposition 2.1) on the generality of 
the method, which is a variant of Proposition 5.2 from (Boutet de Monvel, 
Georgescu 1992). 

We may apply this method to quite anisotropic and this is its ma.in merit. 
Webegin with operators of the form H = Ho+ V in 1i = L2(IRN), where V 
is a multiplication operator and Ho the convolution by a suitable symbol h. 

We allow large classes of V's which arenot Ho-compact. One of the pos­
sible behaviors for V is to have radial Iimits ( depending on the direction) 
with a certain rate of convergence, depending on h. But we are not limited 



206 Anne Boutet de Monvel and Marius Mantoiu 

to this ( quite anisotropic) situation. In the forth and fifth chapters we treat 
second-order, elliptic operators. The interest of the results is two-fold. First, 
the coefficients of the main term may diverge or vanish both locally and at in­
finity. Even in the uniformly elliptic case, they are allowed not to have radial 
limits. Second, the perturbations may also behave quite anisotropically. The 
Schrödinger operator H = ..1 +V ( ..1 = the laplacia.n) is a particular case, for 
which we generalize the results obtained in (Boutet de Monvel, Kazantseva, 
Mantoiu 1996). 

2 The abstract results 

In this section weshall prove some abstract assertions which, in applications, 
go much beyond the Kato-Putnam theory. It is convenient to start with the 
case of a bounded operator (we shall explain why in detaillater on). 

Let R be a bounded, self-adjoint operator in a complex, separable Hilbert 
space 1l, with scalar product (-, ·) and norm II · 11. Let also {W(t) I t E 
IR} be a strongly continuous unitary representation of (IR,+) into 1l, with 
infinitesimal generator A. We denote by D(A) the domain of A equipped 
with its graph-norm. Setting W(t)T = W( -t)TW(t), for all TE B(1i) and 
t E IR, one gets a representation of (IR, +) by automorphisms of the C*­
algebra B(1i). In general this is not Co-group of B(1i), because the map 
t ~--+ W(t)T E B(1i) is only strongly continuous. We shall give a suitable 
meaning to the commutator [R, A]. 

Definition 2.1 We write R E C 1(A; 1i) if one of the following equivalent 
conditions is fulfilled: 

(i) The map IR 3 t ~--+ W(t)R E B(1i) is strongly C 1 . 

(ii) The sesquilinear form 

D(A) x D(A) 3 (!, g) ~--+ i(f, RAg) - i(Af, Rg) E <C 

is continuous when on D(A) we consider the topology of 1i. 

Under the above circumstances, the strong derivative cft lt=D W(t)R will be 
denoted by S. It is a self-adjoint, bounded operator in 1l, associated by the 
Riesz lemma to the extension to 1l x 1i of the form introduced in (ii), so we 
will sometimes writes suggestively (but somewhat informally) S = i [R, A]. 

Definition 2.2 A is weakly conjugate to R if RE C 1(A; 1i) and S > 0. 

By S > 0 we mean that S is positive and injective or, equivalently, that 
(!, Sf) > 0 for all f E 1i \ {0}. This is also the positivity assumption used 
by Kato and Putnam. But now A is allowed to be unbounded. 

The possible lack of surjectivity of S will be compensated by the intro­
duction of two extra spaces, which we use in the proof of Theorem 2.1. 
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Definition 2.3 (a) S denotes the completion of 1i for the norm llflls = 
(f, Sf)l/2, 

(b) S* is the completion of S1i in the norm llg lls· = (g, s- 1 g). 

It is easy to check that S* ~ 1i ~ S, where Y ~ X means that (X, Y) 
is a Friedrichs couple, i.e. that X and Y are Hilbert spaces and that Y is em­
bedded continuously a.nd densely into X. The second embedding is obtained 
by duality, identifying 1i with its adjoint 1i* (the topological anti-dual). It 
is also easy to see tha.t S and S* stay in duality with respect to the sca.lar 
product of 1i; each of them will be identified to the other's adjoint. Obviously, 
S E B(1i) extends to an unitary operator: S --+ S*. 

There is one more condition to impose. Let us make the a.ssumption 
tha.t W is a Co- group in the Friedrichs couple (1i, S*), i.e. all the operators 
W(t)(t E IR) leave S* invariant. Then one gets a C0-group inS* by restriction 
a.nd, a.fterwards, a. Co-group in S by duality, setting Ws(t) = (W( -t) ls• )*. 
For simplicity, we denote them all by the same letter W. Their infinitesimal 
generators will also be all denoted by A. But it is convenient to distinguish 
between their domains, written D(A; K), where K = 1i, S or S*. With a 
suitable interpretation, W(t)T = W(-t)TW(t) is an element of B(S,S*) for 
a.ny TE B(S, S*) and t E IR. Then {W(t) I t E IR} is a representation of 
(IR,+) by *-automorphisms of the *-Banachspace B(S, S*). Weshall work 
under the hypothesis SE C 1(A; S, S*) which, in analogy with Definition 2.1, 
means equivalently 

(i) either that the application IR 3 t f-t W(t)S E B(S, S*) is strongly C 1 

(ii) orthat the sesquilinear form (f, g) f-t i(f, SAg) - i(Af, Sg) 1s con­
tinuous when on D(A; S) one considers the norm-topology of S. 

This gives meaning to the second-order commutator 

i[S', A] = i[i[R, A], A] E B(S, S*) , 

either as the strong derivative at t = 0 in (i) or as the symmetric operator 
assigned to the extension toS X S of the sesquilinear form in (ii). 

The relevant informationweshall get for R is some uniform estimate on its 
resolvent. This will be expressed by means of some Banach spaces which we 
describe now. Reca.ll that C = D(A; S*) is endowed with a Hilbert structure 
by the graph-norm: 

Then ( S*, C) is a Friedrichs couple. We assign to it a certain real inter­
polation space. For the significant facts about real interpolation we refer to 
(Triebel 1978). See also (Amrein, Boutet de Monvel, Georgescu 1996) and 
(Boutet de Monvel, Georgescu, Mantoiu 1993), where self-conta.ined treat­
ments are given, as well as applications to a refined form of the Mourre 
theory. 
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Definition 2.4 We set 

t: = (S*, C)~,1 = {g ES* lllglie = 11 t~~2 IIW(t)g- glls· < oo} 

In order to give some insight, let us also consider the well-known complex 
interpolation spaces (S*, C)e, with () E [0, 1]. Then, one has the following 
continuous, dense embeddings ( 0 < B2 < ~ :::; ()1 < 1): 

C = ( S*, C)l <-....t ( S*, C)e 1 <-....t t: <-....t ( S*, C)e2 <-....t S* = ( S*, C)o . 

Hence, t: is slightly smaller than (S*, C).!.. For further use, it is convenient to 
give a description of the adjoint of t:. L~t us set 

(C*,S).!. oo = {! E C* ill!lle· = sup [ ~IIW(t)f- .fllc] < oo} . 
2 ' tE(0,1) yt 

Then ( C*, S) ~ ,oo may be identified to the adjoint oft: ( and it will be denoted 

by t:*). Set ( t:* t for the closure of S in the Banach space t:*. Then ( t:* t is 
a closed subspace of &*. One has ((&*t)* = t: and the following continuous, 
dense embeddings are true for 0 < B2 :S ~ < B1 < oo: 

S = (C*, S)l <-....t (C*, S)e 1 <-....t (t:*t <-....t (C*, S)e 2 <-....t C* = (C*, S)o. 

Theorem 2.1 Assume that A is weakly conjugate to Rand that S = i[R, A] E 
C 1(A;S,S*). There exists a constant C such that, for all.X E JR, p. > 0 and 
f E t:: 

(2) 

Proof. 
(i) For any f E 1{, .X E IR, p. > 0 and E > 0 one has the identities 

=flm(f, (R- .x i= ip. i= ic:S)f) = P.II!W + c:llfll~, 

which give 

II(R- .X =f ip. =f ic:S)fll ~ P.llfll (3) 

and 

11!111 < ~II(!, (R- .X =f ip. =f ic:S)f)ll 
- E 

(4) 

From (3) and from (R- .X =f ip. =f ic:S)* = R- .X± ip. ± ic:S it follows that 
R- .X =f ip. =f ic:S : 1{ - '}i are linear homeomorphisms. Let us set 

We immediately get from (3) and ( 4) the inequalities 
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(5) 

(6) 

(7) 

Since ( G!= )* = Gf, one uses sometimes the notations Ge =: Gf and c; =: G; . 
(ii) It is convenient to put the condition f E & in a more tractable form. 

For E: > 0 and f E S*, Iet us set 

11e fe =- W(r)fdr . 
E: 0 

(8) 

It is shown easily that fe E C, the application E: ~---+ .fe ES* is C1 in norm and 

11 
{11/:lls• + IIA/ells• + II fe; f lls.} ~ ~ Cll/11~ < 00 (9) 

In particular, this yields 

11/e- flls• --4 0 for E: --4 0 (10) 

(iii) We set 
Fe =: Fe(>., J.L; f) = (Je, Gefe} , 

where >. E lR, J.l > 0, E: > 0, f E & and fe is given by (8). One has 

F: = U:- Afe, Geie}+ (G;Je, t: + Afe}- ic(G;Je, [S, A]Gefe} 

The arguments needed to make a rigorous proof out of this formal calculation 
are similar to those appearing in the usual Mourre theory. See for example 
Lemma 3.4 in (Boutet de Monvel, Georgescu, Mantoiu 1993). By (6) we get 

~IF:I ~ ~(IIJ:IIs• + IIAfells•) 1Fel112 + 11[5, AJIIs-s•IFel · (11) 

(iv) Using the version of Gronwall's Iemma proved in (Boutet de Monvel, 
Georgescu, Mantoiu 1993, Appendix B) and (9), we conclude from (11) that 
the Iimit Fa = lirne-o Fe exists and it satisfies 

IFol ~ c{IF1I + [11 ~(ll.f:lls· + IIA/ells·)f} 

~ C{IF1I + ll!lln . (12) 

It is easy to bound IF1I by means of (7) and (8): 

IFll ~ IIGllls·-sllfdl1· ~ c[fo
1

1IW(r)flls·drr 

~ Cll/111· ~ Cll/11~ , 
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so that (12) reads simply 
IFol ~ Cllfll~ · (13) 

(v) To finish the proof, we need only to show that Fa is the right object, 

i.e. that (!", G"(>..,J.l)f")-+ (!, (R->..::r-iJ.L)- 1f) for E-+ 0. For this, we write 

But 

l(f", Gofe)-(!, Gof)l ~ llfe- flls•IIGells·-sllfells• 

+llfells·IIG"- Galls·-sllfells• 

+llfells·IIGalls·-sllf"- flls· 

c 
IIGe(>.., J.L)IIs·-s ~ CIIGe(>.., J.L)II ~ -

J.l 

by (5). In addition, the second identity of the resolvent and (14) yield 

IIG"- Galls·-s ~ IIG"IIs·-s ·llt:SIIs-s• ·IIGalls·-s 
E 

~ C 2 -+ 0 for c; -+ 0 
J.l 

(14) 

(15) 

The convergence now follows from (10) and (15). This and (13) imply one of 

the estimates (2). The other one is obtained in the same way. 0 

Remark 2.1 We get from (2) a large dass of R-smooth operators, as well as 

the absence ofthe singular spectrum. Since our interest lies in the unbounded 

case, we stated explicitly only the estimate (2), from which Theorem 2.2 will 

be deduced. 

Let us study now a self-adjoint, unbounded operatorHin 1l. We suppose 

that it has a spectral gap and fix a real number >..a not belanging to its 

spectrum. We irrtend to apply Theorem 2.1 to R = (>.. 0 - H)- 1 , which is 

self-adjoint and bounded. The Sobolev scale associated to H is denoted by 

{Q 8 }sElR., with the convention that 9 2 is the Operator domain and 9 1 the 

form-domain. g-s is identified to (9 8 )* and the duality form of the couple 

(9 8 , g-•) will also be denoted by (-, ·).Note the embeddings g1 t......> 1l t......> g- 1 . 

H extends to a symmetric element of B(91, g- 1). We adapt Definition 2.2: 

Definition 2.5 The self-adjoint operator A is weakly conjugate (in form­

sense) to H if HE C 1(A; 9 1 , g- 1) and B = i[H, A] > 0. 

The dass C 1(A; 9 1 , g- 1) is defined in the same way as C 1(A; 1l), replacing 

B(1l) by B(91 , g-1 ). We have to impose that eitA leave 9 1 invariant. It 

follows that W(t)H = e-itAHeitA (with a suitable interpretation) is well­

defined as an element of B(91 , g- 1 ). Since B E B(91 , g- 1 ) is positive, we 

can define the Hilbert space ß as the completion of 9 1 in the norm llflla = 

(!, B !)112 . Its adjoint ß* may be identified with the completion of B91 in 

IIYIIa· = (g, B- 1g) 112 . (8,91 ) and w- 1 ,8*) are Friedrichs couples, but in 

general ß and ß* are not comparable to 1{. B extends to a unitary operator: 
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B -+ B*. We must also impose that W( ·) = ei · A is a C0-group in the spaces 
B and B*. This has a standard meaning, since, for instance, W is a C0-group 
in 9- 1 and (9- 1 , B*) is a Friedrichs couple. The interest is twofold. First, it 
gives the framework for defining the dass C 1(A; B, B*) in analready familiar 
way. Second, it allows to introduce A = D(A; B*), which is a Hilbert space 
with the graph-norm jjgjjA = (ligll~· + IIAgll~.) 1 1 2 . For the Friedrichs couple 
(B*, A), there are real interpolation spaces to define. We shall be interested 
into 

The remarks following Definition 2.4 have an obvious counterpart here. 
In particular, the identification :F* = (A*, B)l. 00 is available. (:F*) 0 is the 
closure of B in :F*. We can now state our mair: 'result. 

Theorem 2.2 Let H be a self-adjoint operator having a spectral gap. Suppose 
that it admits a weakly conjugate operator (in form-sense) A, such that B = 
i[H, A] E C 1(A; B, B*). Then 

(a) j(f, (H- .A =f iJ-L)-1 /)I ~ Cll/11}, with C uniform in .A E ffi, J-l > 0 
and f E :F. 

(b) Let IC be an arbitrary Hilbert space. Then any element of 
B( ( :F* )0 , /C) is H -smooth. 

( c) H has purely absolutely continuous spectrurn. 

Proof. Note that (H -.A=r=iJ-L)- 1 E B(Q-1, 91) C B(B*, B) C B(:F*, :F), hence 
(a) makes sense. The pointisthat we cannot expect an estimate uniform in 
J-l in the Banachspace B(9- 1 ,91). Since (b) and (c) follow straightforward 
from (a), we are left with the task of deducing (a) from Theorem 2.1. This is 
done if the following implications are proved (we preserve all the notations 
introduced previously): 

(i) HE C 1(A; 9 1,9- 1) =>RE C1(A; 1i) , 
(ii) B > 0 => S > 0 , 
(iii) BE C 1(A; B, B*) =>SE C 1(A; S, S*) , 
(iv) li(R- .A =f iJ-L)- 1ile-e• ~ C1 => li(H- .A =f iJ-L)- 1il.;r-P ~ C2 , 

with constants C1, C2 independent of .A and J-L. 
We shall argue formally, for the sake of brevity. The missing technicalities 

areeasy to supply. The main remark isthat S = RBR. This gives at once (i) 
and (ii) (here the assumption HE C 1(A;92,9-2 ) suffices, butthiswill not 
be enough further on). R ( considered as an element of B(1i, 92)) extends to 
an isometry: S-+ B. In fact, it is a unitary operator (which we will denote by 
the same letter) because its range contains 92 , which is dense in B. By duality 
and the remark that R is symmetric in a suitable sense, R is unitary from B* 
toS* (it is a restriction of RE B(9- 2 , 1-1.)). In addition, RE B(A, C), hence 
RE B(C*, A*) too. To see this, write 
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IIR/112 = IIR/111· + IIAR/111· 

::; 2(IIR/II1· + IIRA/111· + II[R, AJ/111·) 

But IIR/111· + IIRA/111· = II/II~ and i[R, A] = S = RBR E B(ß*, S*) by 
the next line: 

(16) 

Now, by real interpolation, RE B(:F,[) n B(E*, :F*). We also get (iii) if we 
write 

i[S, A] = i[R, A]BR + RBi[R, A] + Ri[B, A]R 

= 2RBRBR+Ri[B,A]R. 

The second term is obviously in B( S, S*). For the first one, the same follows 

from BR E B(S, ß*) and from (16). In order to prove (iv), one needs a 

formula relating the resolvent of H to the resolvent of R. We start with the 

identity 

(H- z)- 1 = -R + (..\0 - z)(H- z)- 1 R 

which gives for lz- ..\ol ·IIRII < 1 

1 1 - 1 

(H- z)- 1 = --R[R--] 
..\o - z ..\o - z 

(17) 

(18) 

This extends by holomorphy to any z non-real. By inserting (17) in (18) we 
get 

1 -1 

(H- z)- 1 = -R- R[R--] R . 
..\0 - z 

We finish the proof by writing 

II(H- ,.\ =f iJ1)- 1 IIF~.F* ::; 

::; IIRIIF~.F* + IIRI!t:·~.F* ·II(R- ,.\ ~ ±. )- 1 11 ·IIRIIF~E . D 
0- ljl t:~t:· 

Remark 2.2 For operators not having a spectral gap, there is a weaker re­

sult, which was proved in (Boutet de Monvel, Kazantseva, Mantoiu 1996). Let 

us say that Ais weakly conjugate to H in operatorsense if II E C 1(A; 92 , 1l) 

(obvious meaning) and if B = i[H,A] (which is in B(9 2 , 1l) and extends to a 

symmetric element of B(91 , g- 1) ) satisfies (!, B f) > 0 for all .f E g1 \ {0}. 

This is stronger than the weak conjugation in form-sense. If one supplies the 

assumption B E C 1(A; B, ß*), the conclusion of Theorem 2.2 remains true. 

The point is that the proof of Theorem 2.1 admit.s an obvious unbounded 

version if B E B(9 2 , 1l). The critical point is step (i), which has no suitable 

counterpart if one assumes only BE B(91 , g-1 ). 
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Remark 2.3 In applications, the space F is usua.lly quite intricate, so we 
shall not mention explicitly the resolvent estimates. For the case of Schrödin­
ger operators, we described in (Boutet de Monvel, Kazantseva, Mantoiu 1996) 
a space which is embedded in A and which is very explicit. Some scattering 
results are also available (see Corollaries 1.1, 1.2 and their consequences 2.1 
and 2.2 in (Boutet de Monvel, Kazantseva, Mantoiu 1996)). They have finer 
counterparts here, but, since in applications they give transparent a.ssertions 
only for situations which are close to the Schrödinger case, we give up stating 
them. 

Finally, we come to the generality of the method of the weakly conjugate 
operator. In (Boutet de Monvel, Georgescu 1992) it was shown that if the 
spectrum of H on the real, open interval I is purely absolutely continuous 
and of constant multiplicity, Mourre's method surely applies locally on I, 
i.e. there is a self-adjoint operator A satisfying (1) for any compact subset 
J of I. In addition, A can be chosen such that the successive commutators 
[H, A] and [[H, A], A] are bounded. In our global case, we must deal with the 
possible change of multiplicity. We need that this does not happen to wildly. 

Proposition 2.1 Assnme that H is a self-adjoint operator on 1i, wzth pnrely 
absolntely continnons spectrnm eqnal ( np to a set of Lebesgne measure 0) to a 
countable union of disjoint open intervals { O"j }j EIN on which H has constant 
multiplicity mj (0 :S mj :S oo ). Then H admits a weakly conjugate operator 
A such that HE C 1(A; 1i) and B = i[H, A] E C 1(A; ß, ß*). 

Proof. Under the stated conditions, His unitarily equivalent to an operator 

of the form E9 j EIN Qj, a.cting in the Hilbert spa.ce 

E9jEIN L 2 (tTj, d>.; 1ij ). Here 1ij is a mj-dimensiona.l Hilbert spa.ce, d).. denotes 
the Lebesgue mea.sure a.nd Qj is the multiplica.tion opera.tor by the variable in 
L 2( O"j, d>.; 1ij ). For any j, choose Fj : O"j = ( aj, bj) ~ (0, oo) a C 00 -function, 
with all the derivatives bounded by 1, such that 

r d). jbj d). 

.fai Fj(>.) = 00 = c Fj(>.) (19) 

( c E ( aj, bj) is not important ). Then the operator defined on C(f ( O"j) by 

i d d 
Aj = 2 ( Fj d). + d). Fj) (20) 

is essentially self-adjoint. By denoting its closure also by Aj, we check ea.sily 
that Qj E C 1 (Aj,L2 (tTj,d>.;1ij)) and Bj::::: i[Qj,Aj) = Fj > 0. We need to 
have Bj E C 1(Aj;Bj,BJ), where Bi is the completion of L2 (tTj,d>.;1ij)) in 

the norm II!IIBj = IIF/ 12 · !II· 
For this, one has to check up that l{f,i[Bj,Aj)g)l :S Cllfllai ·IIYIIBi, for 

all f,g E L2 (tTj,d>.;1ij)) i.e.l{f,Fj ·Fj ·g)l :S CIIF/12JII·IIFfl 2gll· This is 
obviously fulfilled with C = sup->-E!2 1Fj(>.)l. By performing direct sums and 
transforming back to the initial representation we get our result. D 
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3 Perturbations of Convolution Operators 

We apply now the abstract method developed previously to some operators 

of the form 
H =Ho+ V= h(P) + V(Q) (21) 

acting in the Hilbert space 7-i(ffiN) = L2 (ffiN;dx), where dx is the Lebesgue 

measure. We denoted by Q the position observable and by P = -i\1 the 

corresponding momentum. tp( Q) will be the usual multiplication operator by 

the Bore! function tp. The convolution operator 1/J( P) is, by definition, unitar­

ily equivalent to 1/J(Q) by F, the Fourier transform: 1/J(P) = F- 17/J(Q)F. For 

the spaces of test functions and distributions on m,N, we use the standard 
notations: D(ffiN), S(ffiN), S*(ffiN), D*(ffiN). 

In our choice of weakly conjugate operator we are guided by the desire 

to preserve form (21) after commutation. The reason is that there are some 

effective criteria of positivity for such operators. Consider a real, symmetric, 

bilinear form 1 on m,N and derrote by the same Ietter the linear, symmetric 

operator: m,N -+ m,N assigned to it. We define the self-adjoint operator 

1 i 
A1 = 2{!(P, Q) + !(Q, P)} = 1(P, Q) + 2 Tr('Y) . (22) 

Here Tr derrotes the trace and (-, ·) the scalar product in m,N, with I · I the 

corresponding norm. The unitary group generated by A1 is given by 

[W,(t)f](x) = etf 2 Tr(r) f(et 1 .r) 

for all t E IR, x E IRN and f E 1i(IRN). It leaves S(IRN) invariant. The 

notations D1 tp = 1(x, 'Vtp) and D~tp = D1 (D1 tp) are convenient. At least 
formally 

B =: i[H, A,] = (D,h)(P)- (D, l")(Q) . (23) 

Definition 3.1 The function tp : m,N -+ ffi is called 1-attractive (resp. I­

repulsive) if D, tp 2: 0 ( resp. D1 tp :S 0). If the first inequality is strict almost 

everywhere, tp will be called 1-superattractive. 

1-attractivity is equivalent to the fact that the application t f--' tp( et' x) is 

increasing. 

Definition 3.2 We say that the functions tp, 1/J : m,N -+ [0, oo) form a 

compatible couple if S(ffiN) C fm[tp(Q)]nfm['lj;(P)] (fm(T) is the form-domain 

ofT) and for every f E S(ffiN) 

(!, tp(Q)f) :S (!, 1/J(P)f) . (24) 

We shall state later some conditions implying (24). For the moment, let 

us make an assertion which mainly stresses the assumptions that one must 

verify, and barely deserves the name of proposition since (iv) and ( v) are left 

in rather implicit form: 
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Proposition 3.1 Let h : IRN -+IR a smooth function which is polynomially 
bounded and V : IRN -+IR a Bore[ function such that V( Q) is h(P)-small in 
form-sense, i.e. V(Q) is h(P)-bounded in the sense of forms, with a subuni­
tary bound. Assurne that there is a real, symmetric, bilinear form 1 on IRN 
such that 

(i) h is 1-superattractive 
(ii) D-1h S C(l + ihl) 
(iii) ID~I s CD"'h 

(we will say that h is 1-admissible) if (i), (ii) and (iii) are true) 
(iv) (ID"' VI, (1- b)D"'h) is a compatible couple for some b > 0 
(v) (ID~VI, CD"'h) is a compatible couple for some finite C. 

Then the self-adjoint operator H = h(P) + V( Q) has no singular spectrum. 

Proof. H is self-adjoint as a form-sum, with form-domain 
91 = D(lh(P)I 112 ). S(IRN) is dense in 91 (even FD(IRN) is dense in 91 , 

just because h E L~c(IRN)). We shall get the conclusion by taking A = A"' 
in Theorem 2.2. Since a form-calculation on S(IRN) gives 

W"~( -t)h(P)W"'(t) = h(et"~ P) , 

in order to check that 91 is left invariant by w"'' we need only to show that 

lh(e1"~x)l S c(t)lh(x)l 

for all t E IR and x E IRN. This is clone by writing 

h(et"~x) = h(x) + 1t d~ h(eT"f x)dr = h(x) + 1t (D"'h)(eT"f x)clr 

and by using (ii) and the standard form of Gronwall's lemma. It is easy to 
get (23) as forms on S(IRN) and by means of (iv) and (ii) we obtain 

6(D"~h)(P):::; B S (2- 8)(D"~h)(P):::; C(l + lh(P)I) (25) 

(i), (25) and the fact that S(IRN) is dense in 91 show that 

HE C1 (A"~;9 1 ,9- 1 ) 

and that B is positive and nondegenerate as a form defined on 9 1. It also 
follows that the norms IIJIIB = {!, B/) 112 and 

II/II~ = II(D"~h)(P) 112 !II 
are equivalent. The second one will be preferred to clefine the Hilbert space 
ß by completion. ß* will be the completion of B91 in the norm 

11911~· = II(D"'h)(P)-112911 . 
For simplicity, the accents will be dropped. In orcler to finish, we need only 
to prove that W"~ is a C0-group in the Friedrichs couple (91 , ß*) and that 
B E C 1 (A"'; ß, ß*). This is clone by the same type of arguments as above, 
taking (iii) and (v) into account. 0 
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Remark 3.1 Condition (iv) can be replaced by the requirement that V is I­

repulsive. This is a generalization of Lavine's result on Schrödinger operators 

(where h(x) = lxl 2 and 1 the identity in IRN), which seems to be difficult 

to obtain by other methods. But note that, in order to verify the property 

B E C1(A-y; B, B*) in a simple way, one needs the equivalence between II· IIB 
and II · II~ and this requires an extra condition on V. This and the assumption 

(v) make the 1-repulsive case less attractive than one could have hoped. But 

there is a simple, though not trivial situation which is easy to deal with. We 

say that V is 1-homogeneous of degree 0 if D-y V= 0. This means that V does 

not change when et-r is applied to its argument. In this case, the conditions 

(iv) and (v), which were left in an implicit form for the moment, are trivially 

satisfied. 

Remark 3.2 Actually, the choice 

A~·b = ~[!(P-a, Q- b) + 'Y(Q- b, P-a)] 

with a, b E IRN is also available and we get 

B =: i[h(P) + V(Q), A~·b] = 1(P- a, (Vh)(P))- 'Y(Q- b, (VV)(Q)) , 

which also has the form (21). Hence, our results will have more general coun­

terparts, since a and b are at our disposition. 

Example 3.1 We give now an example which will show both the usefulness 

ofmore general 1's than identity and the efficiency ofProposition 3.1 to deal 

with symbols h which arenot bounded from below. Take h(x1 , x2) = (~·);2 , 

where the notation (x) = (1 + lxl 2 ) 112 will be systematically used. Then 
2 2 

((hh)(xl, x2) = w[1- 2~] and (82h)(xl, X2) = ~[1- 2~]. The only 

positive combination of the form D-yh is obtained by taking 1 = ( ~ ~): 

In fact, h is 1-admissible. For any bounded, Borel function v : IR__..,. IR we set 

V(x 1 , x2) = v(xi- xD in order to obtain a function which is 1-homogeneous 

of degree 0. Then, by t.he Remark 3.1 the self-adjoint operator 

has purely absolutely continuous spectrum. Many examples of this type may 

be given. However, the cases h(x1, x2) = x1 · x2 and h(x1, x2) = xi- x~ are 

not covered. There is no 1 satisfying both (i) and (ii). 
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Example 3.2 There isasituationnot included in Proposition 3.1, but easy 
to deal with, when some monotony is involved. Rather than formulating a 
general but easy result, we will show a typical example. Take h( x) = f;). Then 

(ihh)(x) = {x}-3 [1 + x~ + ... + xÄr] > 0 and one checks easily that Theorem 
2.2 applies with A = Q1 and H = m + V, where V is a bounded function 

or, more generally, a bounded map from IR to B[1i(IRN-l)]. We believe that 
this example and others of this kind cannot be covered by Mourre's method 
or by the Kato-Putnam theory. 

We come back now to the assumptions (iv) and (v) of Proposition 3.1. 
Suppose that cp, t/J are two positive functions defined on IRN, such that 
S(IRN) C fm[cp(Q)] n fm[t/J(P)] and t/J vanishes on a negligible set. Suppose 
also that the operator cp112(Q) · t/J- 112(P) extends to a bounded operator in 
1i(IRN), with norm::; 1. Then, for g = tjJ 112 (P)f, with f E S(IRN), one has 
t/J- 112(P)g = f E D[cp112(Q)] and 

II'P112(Q). t/J-l/2(P)gll = II'P112(Q)fll::; IIYII = llt/J112(P)fll· 

This means exactly that (cp, t/J) is a compatible couple and leads us to search 
for couples (F, G) such that F(Q)G(P) E B[1i(IRN)]. We recall the defini­
tion of some classical spaces, restricting ourselves strictly to the information 
needed and sending for more comprehensive presentations to (Simon 1979) 
and (Triebel 1978). J.t[.l?] denotes the Lebesgue measure of .l?. 

Definition 3.3 L~(IRN) = {'P: IRN---+ <C I J.t[{x llcp(x)l > t}] ::; CrP }, 

p E [1, oo). 

Le,(IRN) is a quasi-Banach space with the quasi-norm 

II'PIIL~ = sup{t~t[{x llcp(x)l > t}] 11P} 
t>O 

called the Marcinkiewicz space of order p (or the weak-LP space). 
If p ::f 1, it is Banachizable. We set L00 (IRN) ::: L00 (IRN). Although 

LC, (:rn.N) is only slightly bigger than LP (IR H) (p ::f oo), there are common 
functions in L~(IRN) which are in none of the spaces Lq(IRN) (I· r~ is an 
example). The relevance of Definition 3.3 in our context is given by the next 
result, taken from (Simon 1979). 

Lemma 3.1 Let F E L~(IRN), :FG E L~ (IRN), p E (2, oo], 1/p + 1/p' = 1. 
Then F(Q) · G(P) E B[1i(IRN)] and there is a constant c, depending only on 
p and N, such that 

IIF(Q) · G(P)II::; ciiFIIL~ ·IIFGIIL~· 
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Note that :FG E L~ (IRN) with p' E (1, 2) implies G E L~(IRN), but 
the converse is false. It seems that the value of the constant c is unknown. 
Combining Proposition 3.1 with Lemma 3.1, we get 

Theorem 3.1 Let 1 be a real, symmetric, bilinear form on IRN. Suppose that 
h IRN ~ IR is polynomially bounded, 1-admissible, 

:F[(D'Yh)- 112 ] E L~~(IRN) and :F[(D'Yh)- 112] E L~~(IRN) for two values 

p~, p~ E (1, 2). Let V : IRN ~ IR a Bore[ function, such that V ( Q) is small in 

form-sense with respect to h(P), D'Y V E L~,; 2 (IRN) and D~V E L{~"/ 2 (IRN), 
where Pj is the exponent conjugate to pj, j = 1, 2. Then, if IID'Y V IILp112 is 

small enough, H = h(P) + V(Q) has purely absolutely continuous spectrum. 

Remark 3.3 An explicit condition implying that V( Q) is small in form­
sense with respect to h( P) is the existence of a p0 E (2, oo) such that 

F(lhl- 112) E L~~(IRN) where /o + P1~ = 1, and V E L 00 (IR.N) + L{:.:,;2(IR.N), 
I /2 N 

with a small L~0 (IR )-component. 

Example 3.3 We consider the case h(x) = lxlb, where a = b/2 E (0, N). We 
take 1 = 1, hence A'Y = A is the generator of dilations. One has D'Y h = bh 
and D~h = b2 h. The Fourier transform of h- 112 = I · 1-a is proportional to 

I· 1-N+a, hence in L~/N -a (IRN). Then H = IPib+ 1/( Q) has purely absolutely 
continuous spectrum for N > b if V satisfies the following conditions: 

(i) V= vl + v2, with vl E L00 (IRN), v2 E L~1b(~), IIV211L;:/b small, 

(ii) D'Y V E L~1b(IRN), with IID'Y VIILN/b small, 

(iii) D~V E L~/b(IRN). w 

The main interest in this kind of results is the fact that V does not have 
to vanish at infinity. Same insight is given by the fact that 1·1-b E L:;fb(IRN). 
Then, the next conditions imply (i), (ii) and (iii): 

(i') V has radiallimits (depending on the direction), to which it converges 
as ~~ with Co small enough (r = lxl is the radial distance), 

(ii') Or V :S rf~1 , with C1 sufficiently small, 

(iii') &;v::::: r~2 l for finite c. 
Of course, (i), (ii) and (iii) allow a more general behavior, both at infinity 
and ( especially) locally. 

Example 3.4 Let us consider briefly another case, where the choice 1 =f. 1 
is very natural. Take into account the decomposition IRN = Y EB Z, where Y 
and Z areproper subspaces ofiRN. Set x = (xY,xZ) E IRN, with xY E Y 
and xz E Z and take 1 = 7l'Y, the orthogonal projection on Y ( 7l'Y x = xY). 

Weshall suppose that h admits the splitting h(x) = hY(xY) + hz(xz). By 
identifying7i(IRN) with the Hilbert tensor product 1i(Y)®1i(Z), h(P) may 
be written as hy(PY)Olz + 1Y ®hz(Pz), where, for instance, pY = -i\7Y 
is the momentum corresponding to the euclidean space Y and 1 Y the identity 
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in ?i(Y). The operator Ay = A1rY is given by Ay = AY 01z, where AY is 
the generator of dilatations in ?i(Y). 

The advantage now isthat the conditions in the Z-variable are very mild. 
Setting H = hy (PY) 01 z + 1Y 0 hz (PZ) + V(QY, Qz) (QY is the position 
observable in Y), one has i[H,Ay] = (DYhY)(PY) 01z- (DYV)(QY,Qz), 
where Dy = DlrY = (xy, vY ·). 

Let us concentrate only on the hypothesis (iv) in Proposition 3.1, assum­
ing that Dyhy > 0 and that V is factorized: V(x) = VY(xY). vz(xz), for 
any vz E U"'(Z) (in fact, vz(Qz) may be replaced by any bounded opera­
tor wz in ?i(Z)). Then (DYV)(Q) = (DYVY)(QY) 0Vz(Qz) andin order 
to have i[H, Ay] > 0 one might impose 

(inequality between operators acting in Jl(Y)). In particular, one might use 
Lemma 3.1 in the euclidean space Y and ask further conditions only on 
hy and VY. The discussion can be carried over to the other hypothesis in 
Proposition 3.1 and the factorizability of V may be by-passed. A typical cir­
cumstance is to have radial Iimits only for directions inside Y. The present 
approach is particularly well-suited to the case of Schrödinger-type opera­
tors, where h(x) = lxl 2• In this way, we can generalize some of the results 
of (Boutet de Monvel, Kazantseva, Mantoiu 1996), by using Lemma 3.1 in­
stead of the point-wise estimate IPY 12 ~ ( Ny2- 2 ) 2 IQY l- 2 , valid for Ny (the 
dimension of Y) ~ 3. 

4 Second-Order Elliptic Differential Operators. 
The Unperturbed Case 

Let us now turn to the case of second-order differential operators with vari­
able coefficients. We shall deal first with the unperturbed operator, written 
formally Ha = Efk=l Pjajk(Q)Pk, where a is a suitable, locally integrable 
matrix function. We shall write a ~ 0 if 

N 1 N L ajk(x)ej(x)6(x)dx 2:: 0 
IR j,k=l 

(26) 

for any e :::: ( 6, ... , (N) E V(IR Nt. Then the next quadratic form makes 
sense on V(IRN): 

and is positive. We set a > 0 if in (26) one has equality only if there is a 
j such that ej = 0. This implies that q~o) is non-degenerate. Note that, for 
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instance, the constant matrix a = ( ~ ~) is > 0. Now, assume that q~o) is 

closable and positive, set llflln 4 = ( q~O) (!) + II!W)112 and Da the completion 
of 'D(IRN) under the norm II · lln 4 • Identifying 1i(IRN) with its adjoint, we 

have the continuous, dense embeddings Da '--J. 1i(IRN) '--J. D~. q~01 extends 
to a closed form qa :Da __,. [0, oo). Under the hypothesis a > 0 we also put 

llflln. = q~0 )(f), Da being completion of'D(IRN) with respect to II· 11.64 and 

q'a the closed extension of q~o) to Da. (Da, Da) and (D~, D~) are Friedrichs 
couples. A unique self-adjoint, positive operator Ha is assigned to qa such 

that D(H~12 ) = Da and qa(f) = IIH~ 12 !W for all f E Da. It extends to a 
symmetric element of B(Da, D~) and, if a > 0, to a symmetric element of 
B(Da, D~). Next, we establish our conventions on ellipticity. 

Definition 4.1 The operator Ha will be called 
(i) weakly elliptic if a is a locally integrable matrix function, a 2: 0 and 

q~o) is closable, 
(ii) elliptic if there exist two continuous functions p1 , p2 : IRN __,. (0, oo) 

suchthat Pl:::; a:::; P2 (here Pl(x)jk = Pl(x) · Djk for any x E IRN, j,k E 
1, ... , N and a :::; b means b- a 2: 0), 

(iii) uniformly elliptic if in (ii) one can take p1 and p2 strictly positive 
constants. 

For subsequent use we will need following criterion of closability, taken 
from (Röckner, Wielens 1985): 

Lemma 4.1 The quadratic form q~o) is closable ifthere is a closed, negligible 
set [l C IRN such that for any compact subsei K of IRN \ fl there exists a 
finite constant DK suchthat a(x) 2: DK · 1 almost everywhere on K. 

This shows in particular that elliptic :=} weakly elliptic. Our purpose is to 
find conditions under which Ha has purely absolutely continuous spectrum. 
The examples we shall cover are to be compared with the following result, 
taken from (Davies 1989). 

Lemma 4.2 Let Ha be elliptic. lf a(x) is the smallest eigenvalue of a(x) 
which satisfies limlxl-->oo jJj) = oo, then Ha has a compact resolvent, hence 

its spectrum is purely discrete. 

For the weakly conjugate operator we make the choice (3.2). We need the 
notation {/, a} = 1 · a + a · 1 and F( a) = {'y, a}- D1 a. The second one reads 
in coordinates: 

N N 

r(a)jk = 2)/jl. azk + ajl. /lk)- L 'YmnXmOnajk 
1=1 m,n=l 
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Theorem 4.1 Assurne that: 
(a1) Ha is weakly elliptic, 
(a2) r(a) and F 2(a) = r[r(a)] are locally integrable, 
(a3) 0 < F(a):::; Ca, 

(a4) for any ~' 1} E V(IRNt 

11 N L F 2(ab. ~j ·1Jkdxl:::; c(l N L r(a)jk. ~j. 6dx) 112 
X 

lR j,k lR j,k 

X (1 N L r(a)jk1/j "1Jkdx r12 

lR j,k 

Then Ha has purely absolutely continuous spectrum. 

The proof is a Straightforward verification of the hypothesis of Theorem 
2.2 and has some points in common with the proof of Proposition 3.1. Weshall 
not give further details here. Note the identifications B = Hr(a), i[B, A."] = 
Hr2(a), 91 =Da, g-l = D~, B = Dr(a) and B* = Dha)· 

We give now some examples showing that absolute continuity of the spec­
trum is compatible with a quite wild behavior of the coefficients both locally 
and at infinity. 

Example 4.1 ajk = a · Djk, with a = a0(M + sin lf'), where lf' : IRN ---+ 

IR is a smooth function, a0 : IRN ---+ [0, oo) a locally integrable function, 
homogeneaus of degree ß E IR, strictly positive a.e., suchthat q~O) is closable. 
M is a positive constant. We take 1 = 1 if ß < 2 and 1 = -1 if ß > 2. 
The reason is that, for 1 = 1, one has (set rp = (x, 'VIf') and :P = ('Pt= 
(x, 'V(x, 'VIf'))) 

F(a) = ao{(2- ß)M + (2- ß)silllf'- rp · COS!f'} 

and 

The conclusion isthat Ha will have purely absolutely continuous spectrum if 
ß -:f 2, rp and :P are bounded, M is big enough and q~o) is closable. 

If lf' = 0, M may be any positive number. Let us write a0 (x) = lxlß~( fxr) 
and suppose that 0 < c1 :::; ~( w) :::; c2 < oo for any w E SN -l, the unit 
sphere in IRN. Then, in order to have a E Lfoc and the closability of q~O), it is 
enough that ß > -N (if ß > 0, one takes [l = 0 in Lemma 3.1). If lf' isaradial 
function, its constraints read: lf''(r):::; [j: and lf'"(r):::; ;:, . Hence, for instance, 
we may allow lf'(r) =In r for big r. This shows that in the uniformly elliptic 
case (ß = 0), a needs not have radial Iimits. However, if these Iimits exist, 
they may depend on the direction ( take ~ nonconstant). Instead of sin lf' we 
can set B o lf', with B smooth and B, B', B" bounded. It is remarkable that ß 



222 Anne Boutet de Monvel and Marius Mantoiu 

may be non-null. The case ß > 2 shows that in Lemma4.2. the condition "Ha 
is elliptic" cannot be removed. It also shows an interesting effect. Take ß > 2 
and add to a any positive, C00-perturbation b with compact support, such 
that b(O) =/= 0. Then, by Lemma 4.2, H a+b will have purely discrete spectrum. 

In conclusion, if one has only weak ellipticity, the local behavior is very 
important and the spectral properties are very sensitive to perturbations. 
The annulations and singularities may occur also in nontrivial subspaces of 
IRN. Write for example IRN ~ IRN1 X ... X IRNm 3 x = (x1, ... , Xm) and 
ao(x) = lx1lß1 •• • lxNißm · '!fo( 1 ~ 1 ), where ßj E IR, "Po is smooth and 0 < c1:::; 

"P( w) :::; C2 < 00 for any w E sN -l. If ßj > - Nj' then a is locally integrable 

and q~O) is closable ( take Q = { x I 3j such that ßj < 0 and x j = 0} in 
Lemma 4.1). The only extra restriction is ß = 'Lj~ 1 ßi =/= 2. 

Example 4.2 aik = Djk · a, with a(x) = (x)ß"P(~){M + sin<p(x)}. lf <p and 

"p are smooth, 0 < Cl :::; "P(w) :::; c2 < 00 for all w E sN-l and M is not too 
small (this depends on <p; any way, M > 1 is always enough), then Ha will 
be elliptic. For 1 = 1, we have 

r(a) = 

( 2 - ß ~: ~:) (x )ß "P ( I: I) [ M + sin <,o( x )] - (x )ß 1j1 (I: I))<?( x) cos <,o( x) 

If ß < 2, then Ha has purely absolutely continuous spectrum if M is suffi­
ciently big and )<?, ~ are bounded. For ß = 2, the sa.me conclusion is obtained 

for <p = 0. lf ß > 2, the quantity 2- ß~ has opposite signs around 0 
and infinity and there is no positivity. In fact, by Lemma 4.2, Ha has purely 
discrete spectrum. 

Example 4.3 ai k = Dj k · ai, with aj a homogeneaus function of degree ßi, 
such that Ha is weakly elliptic (some oscillations may also be added). If we 
work with /jk = Djk, then we need ßi < 2 for all j, while /jk = -DjJ., requires 

ß > 2 for all j. But with /j k = Dj k · /j, the conditions are 'Lf=l ßk · 'Yk < 2/j 
for any j and very often this is a gain. For instance, if N = 2, ß1 = 3 and 
ß2 = 1 we require 3/1 + /2 < 2/2 and this has plenty of solutions ( e.g. /2 = 0 
and /1 < 0). 

5 Second-Order Elliptic Differential Operators. 
The Perturbed Case 

We add now some perturbations to Ha. The operators we have in view have 
the form 

H(a, b, V)=: Ha+ Hb + V(Q) , (27) 

where V(Q) is the multiplication by the Borel function V : IRN -> IR and 
Hb is defined by 
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b- 1 H = 2"{(b(Q),P)+(P,b(Q))}. (28) 

Here b = (b1 , ... ,bN): IRN---+ IRN is locally integrable and (28) has an 
obvious meaning as a quadratic form on V(IRN). Weshall worry later about 
conditions making H(a, b, V) a well-defined, self-adjoint operator in 1i(IRN). 
For the moment, remark that formal calculations give 

B := i[H(a, b, V), A"] = H(F(a), b", -D" V) (29) 

and 

i[B, A"] = H(F 2(a), (b")", n;v) , 

where (b")j = (! · b- D"b)j = 2::=1 /'jkbk- I:fn=1 'YlnX!Onbj, for any jE 
{1, ... , N}. Hence, we need positivity criteria for operators as (29). Suppose 
first that an inequality of the form 

Hp ~ W(Q) (30) 

is proved, with p, W : IRN ---+ [0, oo) Borel functions, such that p( x) > 0 
a.e. and Hp is weakly elliptic (Hp is a brief notation for Hp. 1). Then, if 
lbl :S VP · W, weshall have 

(31) 

for any f E V(IRN), by a sir~ple application of the Cauchy-Schwarz inequal­
ity: 

I~ {(f, (b, P)f) + (!, (P, b)f))l <: lt,< jpt. y'iiP;f) I 
:S (!, Hp/)1/2(!, ~ /)1/2 

p 

and it remains only to use (30). Hence, we need only conditions on p and W 
which entails (30). We shall use an easy generalization of an argument from 
(Faris 1978). 

N -Lemma 5.1 Let p : IR ---+IR such that W and W are locally integrable 

{p = (x, 'V p)). Assurne that Hp is weakly elliptic and that M(p) = HN- 2 + 
inf(pjp)]>O. Then 

(32) 

Proof. For any j, k E {1, ... , N} we set Jjk = QjPk- QkPj = PkQj- PjQk. 
the (j, k )-component of the angular momentum. Some simple calculations 
show the decomposition of Hp into the sum of aradialand an angular term: 
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N 
H - Hrad +Hang- (P Q)p(Q) (Q P) 1 '""' J p(Q) J 
p- p p - , JQJ2 , + 2 .~ jk JQJ2 jk 

},k-1 

Let us use the relation 

0:::; (A- iB)*(A- iB) = A* A + B* B- i(A* B- B* A) 

for A = 1J?)(Q, P) and B = ß'1J?). Then A* A = H~ad:::; Hp and i(A* B­

B*A) = Ef:1i[Pj,ßJ%Tp(Q)]. This gives Hp;::: ß[N -2+ß+ !f~~Ji&~J and 
one gets (32) by taking ß = M(p). 0 

The next result relies on Theorem 2.2, on the considerations above and 
on some routine verifications. We use notations introduced before. 

Theorem 5.1 Assurne that Ha satisfies (at)-(a2)-(aa)-(~) from Theorem 
4.1 and 

(as) There exists a function p: IRN ~ [O,oo), strictly positive a.e., such 
that ~ and ~ are locally integrable, M(p) > 0 and F(a);::: p · 1. 

Let also b : IRN ~ IRN and V : IRN ~ IR be locally integrable functions 
such that for positive constants at, a2, ß1, ß2, /t, 12 with a1 + a2 < 1 and 
ß1 + ß2 < 1 one has: 

al, 
(bt) Hb is bounded in form-sense with respect to Ha, with relative bound 

(b2) Jb-yJ :S ß1M(p)~ , 
(ba) J(b-y)-yJ ~ 11 fxr, 
( cl) V( Q) is bounded in form-sense with respect to Ha, with relative bound 

a2, 
(c2) jD-yVJ:::; ß2M(p)2W, 
(ca) ID~Vl ~ /2~ . 

Then H(a, b, V), defined as a form-sum, is self-adjoint and has purely abso­
lute/y continuous spectrum. 

There is also a 1-repulsive version with respect to V. One can make (bl) 
and ( c1) explicit in the same spirit as above. It is sufficient that a. ;::: u · 1, 
where u has the same properties as p, 

(bD b = b(1) + b(2), with 1'*1 E L00 (IRN) and Jb(2)J:::; a1M(u) l~l, and 

(cD V= V(l) + VC 2), with V(1) E UXl(JRN) and JVC 2)J:::; a2M(u)2~ . 

We shall try now to convince the reader that the conditions imposed on 
the coefficients are rather mild, especially in what concerns their long-distance 
behavior. Let us come back to Example 4.1: 
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where ß E ( -N, 2) U (2, oo), 0 < c1 ::; "P(-)::; c2 < oo and rp, (p are bounded. 
lf M is big enough, one may take u(x) = d1lxlß and p(x) = d2lxlß for two 
positive constants d1 and d2. Since M(p) = M(u) = N-;+ , we are restricted 
to ß E (2- N, oo) \ {2}. The conditions on band V reads now: 

(bn b = b(l) + b(2)' with lb(1)1::; 61rß12 , lb(2)1 ::; 62rß-l 
(b~) 18rbl ::; 63rß-2 

(b~) lä;bl ::; 64rß-3 

(cn V= vCl) + vC2), with IV(1)1::; 65 and IV(2)1::; 66rß- 2 

( c~) lär VI ::; 67rß- 3 

( c~) 1a;v I ::; 6srß- 4 

where 61, ... , 6s are suitable constants and we set r = lx 1. Note that, if 
ß is large enough, the coefficients are allowed to diverge at infinity. From 
the estimate lär<t?l ::; ora with a < -1 it follows that <p has radial Iimits 
<p(oo. w) = limr ..... oo <p(r. w) for any w E sN-l (the unit sphere in IRN) to 
which it converges as ra.+l. The Iimits may depend on w. This works for Vif 
ß E (2- N, 2) and for b if ß E (0, 1). Even more anisotropy is permitted by 
the moreclever choices u(x) = d1lxlß"P(~). If the coefficients of the main 

term behave very different in different directions (like lx1lß1 •• • lxNißN for 
example), the same is allowed for b and V. Important local singularities are 
also available. 

There are cases where it is enough to use arguments as above only in a 
proper subspace Y of IRN, in some analogy with Example 3.4. The behavior 
of the coefficients b and V in the Y-variable will be restricted as already 
explained, but there will be only very mild conditions along Y .L. We will 
not develop this here. The important case where Ujk = 6jk (Schrödinger 
operators) was described in detail from this point of view in (Boutet de 
Monvel, Kazantseva, Mantoiu 1996). However we did not include a first-order 
term there. 

Note added in proof 

After we proved the abstract results of Chapter 2 ( which improve on those 
in (Boutet de Monvel, Kazantseva, Mantoiu 1996) we learned of (Combes, 
Hislop, Mourre 1996) in which a version of Theorem 2.1 is obtained. 
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Salutions to the Hierarchy 
of the Periodic Toda Lattices 

L. Trlifaj 

Institute of Physics, Na Slovance 2, Pr aha 8 - 18040 
Czech Republic 

Abstract. The hierarchy of the periodic Toda lattices is derived by means of the 
Appelle transformation. Members of the hierarchy are determined by equations 
of motion, by Hamiltonians and Lax pairs. Only two- and three-particle systems 
besides the basic Toda lattice are solved by quadratures in accordance with the 
Stäckel theorem. Other members of the hierarchy assume the solving of the poly­
nomial equation, the degree of which is higher than four. 

1 Introduction 

The periodic Toda lattice describes the motion of g + 1 point masses on the 
circle or on the line with periodic repetition under the influence of an ex­
ponential force. This motion is characterized by (utmost) g + 1 conserved 
quantities which are in mutual involution with respect to the usua.l Poisson 
bracket. Any of the qua.ntities can be ta.ken as a Hamiltonian, in this sim­
ple way one constructs a hierarchy. The systema.tic way of constructing a 
hierarchy for the finite (but open) Toda lattices was given in 1. 

We make use of the Appelle transformation 2 when constructing a hierar­
chy. Any member of the hierarchy of the periodic Toda lattices is determined 
by the equations of motion, which we write down also in the Hamiltonian 
form. It is easy then to derive the Lax pair for each of the members. The 
proof of the explicit integrability is madeeasy by the auxiliary discrete Hill's 
equation i.e. by the ma.trix L, which is common to the whole hierarchy. Con­
sequently particle momenta for different members of the hierarchy depend 
on the location in the lattice in the same way, they differ only by the time 
dependence, which is, however, independent on this location. The two- and 
three-particles (g = 1, 2) periodic Toda systems are integrated by means of 
quadratures for any member of the hierarchy in accordance with the Stäckel 
theorem, 3, 4. Other systems of the hierarchy cannot be integrated by means 
of quadratures as they assume, that the polynomial equation, the degree of 
which is higher than four,has tobe solved. 

2 The Appelle Transformation 

The equations of motion for the basic periodic Toda lattice read 5 
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(1) 

where 

an = an+g+1 = ! exp[t(qn- qn+!)], bn = !Pn = bn+g+b 

as qn = qn+g+1, Pn = Pn+g+1 ( n = -oo, ... , +oo) . (2) 

The Lax pair, which corresponds to (1), is 

L = BL- LB, L'l/J = >.'lj; (3) 

The explicit form of the second equation 

an'l/J(n + 1) + bn'l/J(n) + an-1'1/J(n- 1) = >.'lj;(n) (n = -oo, ... , +oo) (4) 

the auxiliary discrete function '1/J( n) satisfies is a discrete version of the peri­
odic Hill's equation with the spectral parameter >.. Therefore L and B in the 
first equation are formally represented by infinite matrices of which the ele­
ments with indices equal modulo g + 1 are equal. Their only nonzero elements 
are 

Ln,n-1 = an-1, Ln,n = bn, 

Ln,n+1 =an, Bn+1,n = -Bn,n+1 =an, Bn,n = 0 . (5) 

If one assumes that >. is a time-independent parameter, the time evolution of 
'!j;( n) is given by the following equation 

L[~ - B.,P] = >.[~ - B'l/J] (6) 

There are two independent solutions of ( 4) (as well as of (6)) a(n, N) and 
ß(n, N), which are defined by the boundary conditions 

a(N, N) = 0 = ß(N + 1, N), a(N + 1, N) = 1 = ß(N, N) . (7) 

They are polynomials in >. of the degree l - 1 and l - 2 respectively for 
n = N + l (1 > 1). We introduce 3-by-3 matrix 

Q(n,N) = 

[ 
ß2 (n,N) ß(n,N)a(n,N) a2 (n,N) l 

2ß( n ,N)ß( n+l ,N) ß( n+l ,N)a( n ,N)+ß( n ,N)a( n+l ,N) 2a( n,N)a( n+l ,N) 

ß2 (n+l,N) ß(n+l,N)a(n+1,N) a2 (n+l,N) 

(8) 

which obeys the equation 

Q(n + 1, N) = V(n)Q(n, N) (9) 

according to (4). The 3-by-3 matrix V(n) is 
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(10) 

Eq. (9) corresponds to a discrete Appelletransformation 2 of (4) as any of 
the elements in the first row of (8) satisfies a third-order linear di:fference 
(recurrence) relation,which results from (9). Columns of (8) represent also 
three independent solutions of (9). 

Some simple relations follow from the form (8) and (9), respectively: 

a3 
S?(n, n) = 1, det S?(n, N) = ~, 

an 
S?(n, N) = V(n- 1)V(n- 2) ... V(N) (n > N) . (11) 

One of the three different eigenvalues of S?( n, N) is ~. If n = N + g + 1 the 
3-by-1 eigenmatrix, which belongs to the unit (!!J:i..) eigenvalue, is 

aN 

T(N) = ( a(N+g+1,N) a(N+g+2,N)-ß(N+g+1,N) a(N+g+2,N+1)) . ( 12) 
aN ' aN ' aN+l 

The product S?(n, N)T(N) is a solution of (9), but 

S?(n + g + 1, n)S?(n, N)T(N) = S?(n + g + 1, N)T(N) = 
S?(n + g + 1, N + g + 1)S?(N + g + 1, N)T(N) = S?(n, N)T(N) (13) 

d ue to the last relation in ( 11). In other words 

T(n) = S?(n, N)T(N) (14) 

as a function of the discrete coordinate n satisfies (9), it is its periodic solu­
tion, T( n + g + 1) = T( n) . The elements of T( n) are polynomials in >., their 
root forms read 

T(N) = 
g g+1 g 

2U+l(Il[>.- fJI(n)], a;:;- 1 rr [>.- VI(n)], II[>.- fJI(n + 1)]) = 
1=1 1=1 1=1 

g g+1 

2u+t(l:)-l)g-lrg-I(n )>.1' a;:;-1 L) -1 )U-1+1/g-1+1 ( n )>.1' 
1=0 1=0 

g 

2.) -1)g-lrg-I(n + 1)>.1) . (15) 
1=0 

r1( n) and lz( n) respectively are elementary symmetric functions ofroots pz( n) 
and vz(n) respectively, r0 (n) = !o(n) = l.The 3 by 3 matrix J 
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[
0 0 2] 

J = 0 -1 0 
2 0 0 

(16) 

builds up invariants for solutions of (9) as 

2 - 2 
anS?(n, N)JS?(n, N) = aNJ (17) 

The expression 
a;T(n)JT(n) = 

2g+2 2g+2 

- 229+ 2 II (,\-Al)= -229 + 2 2:.: (-1)1cr2g-1+2,\1 (18) 
1=1 1=0 

is thus a constant polynomial of the degree 2g + 2 according to ( 15). This 

polynomial is equal to 

- F 2(,\) + 4 = -[a(n + g + 2, n) + ß(n + g + 1, n)j2 + 4 (19) 

as far as with respect to ( 4) and (7) the relation 

ana(n + g + 2, n + 1) = -an+lß(n + g + 2, n) (20) 

and the Wronskian relations for a( n) and ß( n) are used. This means that 

only g + 1 roots from ,\ 1 , .. , ,\29+2 are independent. We assume for the sake 

of simplicity, that there are no multiple roots (i.e. ,\1 # ,\; ), which is, in 

general, possible (see 5 e.g.). The roots /ll (l = 1, ... , g) introduced in (15) lie 

within those intervals of ,\, for which F 2 (,\) > 4, as then only both sides of 

(18) possess the same (negative) sign. One arrange them in such a way, that 

,\1 < ,\2 :S /ll(n) < ,\3 < ... < ,\29-1 < ,\29 :S M9(n) :S ,\29+1 < ,\2g+2 . (21) 

According to (14) T1(n) = a;:;- 1a(n + g + 1, n) is a quadratic form of a(n, N) 

and ß( n, N), so that it can be written as a product of two solutions X±( n, N) 

of ( 4) 
X±(n, N) = T 1 [ana(N + g + 1, Nt~ x 

{2a(N + g + 1, N)ß(n, N) + [a(N + g + 2, N)- ß(N + g + 1, N)]a(n, N) 

± ( JF 2(,\)- 4).a(n, N)} . (22) 

Since T1 ( n) is periodic 

X±(n + g + 1, N) = p±1(,\)x±(n, N) (23) 

Salutions X± ( n, N) are the well-known Bloch solutions of ( 4) (see 5 e.g. ). One 

determines P(,\) from comparison of X±(N + g + 1, N) with X±(N, N), i.e. 

2P(,\) = F(,\) =f JF2(,\)- 4 . (24) 

In the allowed bands of real,\, for which F 2 (,\) < 4 , (22) represent bounded 

complex functions for any n. In the forbidden bands characterized by F 2 (,\) > 
4, (22) are unbounded and real functions. Parameter ,\ plays, indeed, role of 

the spectral parameter. 
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3 The Time Evolution and the Hierarchy 

Wehave still to determine the time dependence of the special solution (14). 
Since T( n) is periodic and does not depend on the boundary conditions of 
type (7), its time-evolution equation reads unlike (6), 

T(n) = W(n)T(n) (25) 

where the 3 x 3 matrix W(n) must be still determined. (25) is compatible 
with (9) and (18) if 

V(n) + V(n)W(n)- W(n + 1)(n) = 0 (26) 

and 

(27) 

At the same time the time derivatives of an and bn are given by fn 's and 
Yn's, 

There are an infinite number of ways to fulfil (28). We limit ourselves to 
polynomials in A. They are characterized and thus classified by the maximum 
chosen power of fn· lf its power is k, the maximumpower of Yn is k- 1. 
The coefficients fn, Yn and an, bn must be calculated directly from (28) for 
k = 1, 2. k = 1 defines the basic Toda lattice. When k 2:: 3, we write 

k-2 

fn = Ak + L rLI(n) + Pk(n), 
1=1 

k-2 

Yn+l = -an+l pk-l + L Rk-l(n)A1} . 

1=0 

Comparing coefficients at the same powers of A in (28) one obtains 

R2(n) = bn+l, r2(n) = 2a~, r3(n) = 2a~(bn + bn+I), 
1 

Rp+t(n) = bn+tRp(n) + 2[rp(n) + rp(n + 1)], (k- 1 2:: p 2:: .A), 

(29) 

rp+l(n + 1)- rp+t(n) = [rp(n + 1)- rp(n)]bn+l + 2a~+1RP(n + 1) 
-2a~Rp(n- 1), (k- 2 2:: p 2:: 2) , (30) 

Pk(n + 1) = 
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an 1 
- = -bn+lRk(n)- -2 [pk(n) + Pk(n + 1)], 
an 

bn = -bn+lPk(n + 1)- a;+lRk(n + 1) + a;Rk(n- 1) 

-b;+ 1 Rk(n) . (32) 

The recurrence relations (30) for a chosen k can be solved in an algorithmic 

way, preferably using a computer. If we use (30) without the Iimitation and 

take them as an infinite system, then 

These equations give the equations of motion for the members of the hierarchy 

classified by k. According to these equations 

0 81i(k) 1 81i(k) 
qn = --gp;;- = 2~ = Rk+l(n- 1) + const., 

0 81i(k) 1 81i(k) 1 81i(k) 
Pn = --8-- = --2an-8-- + -2an-1-8--, 

q". a". an-1 

0 81i(k) 
1.e. an-8-- = 2rk+l(n- 1) + const. 

an 
(34) 

We determine the Hamiltonian 1i( k) which corresponds to the k-th member of 
the hierarchy by applying the well-known theorem for homogenaus functions, 

since rk+l ( n) and Rk+l ( n - 1) are known as homogenaus forms. Therefore 

n n 

from (30) and the periodicity of the lattice. 
One can also easily show that 1i(k) are mutually in involution to different 

k with respect to the Poisson brackets. There are g + 1 constant and inde­

pendent 1i( k). They are proportional to the traces over one period Tr( Lk+ 1) 

as these traces are constants and homogeneaus forms in a". 's and bn 's. 

The Lax pair 

L = B(k)L- LB(k), Ll/J = >.1/; (36) 

for the hierarchy can be derived in a similar way, the common quantity L 

makes it easy. We have 
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. 1 1 
bn = 2Bn,n+1(k)- 2Bn-1,n(k) = ·~tk+1(n)- 2rk+1(n- 1), 

i.e. Bn,n+1(k) = -~rk+1(n), 
an= an+1Bn,n+2(k)- an-1Bn-1,n+1(k) + [bn+1- bn]Bn,n+1(k) = 

an 
2[Rk+l- Rk+1(n- 1), (37) 

and for Sn,n+p(k) =an ... an+p-1Bn,n+p(k), (p > 2), we get 

Sn,n+p(k)- Sn-1,n-1+p(k) = (bn- bn-1+p)Sn,n-1+p(k) 

+a~Sn+1,n-1+p(k)- a~-2+pSn,n-2+p(k). (38) 

These difference equations are solved in a similar way to (30). The result of 
the calculation isthat Sn,n+p(k), i.e. Bn,n+p(k), are zero for p ~ k + 1. This 
result follows from the formulae in the paper 6 which are based on the strictly 
triangular parts of Lk. 

4 The Integration and the Conclusion 

Now, we perform the integration of equations of motion (33) in an analogical 
way to the integration of the basic ( k = 1) Toda lattice since the matrix L is 
fixed for the whole hierarchy. 

We proceed in four steps. It follows from both (8) and (9) that 

g 1 2g+2 
bn=-LJ.tl(n)+2 LAI. 

1=1 1=1 
(39) 

As far as there are g independent roots J.ll ( n) ( l = 1, ... , g) for a fixed n, we 
have to determine the dependence of Jll' ( n') for n # n' and l # l' on these 
J.tl(n). But this problern is common to the whole hierarchy. Its solution for 
the basic Toda lattice is known as the J acobi inverse problem. So we use it 
in the sequel. We give only final formulae (see e.g. 5, 7 and 8). The Riemann 
surface of the hyper elliptic curve 7 

2g+2 
y2 = R(-X) = 11 (-X- -XI) (40) 

1=1 
is realized by cross-connecting two copies of the A-plains which are cut along 
( A21- 1, )1/) ( l = 1 ... , g + 1). On this surface, one takes a closed contour o:1 

(l = 1 ... , g) which surrounds the cut (,\21+1, A21+2) on the upper sheet. One 
uses also a second set of similar contours, ß1, that start at ,\2 and go on the 
upper sheet of S as far as A21+1, cross the lower sheet and end at ,\2. One 
introduces a base of the Abelian differentials ( of the first kind) 



234 L. Trlifaj 

g-1 

Wj = :~::>jiA 1 R-t(>.)dA (j = 1, .. . ,g) 
1=0 

normalized by 

so that Cj 1 are real. The matrix ( Tj!) defined by 

[ W! = Tjl (j,[ = 1, .. . ,g) 
Jßi 

( 41) 

(42) 

(43) 

is also real and symmetric, a negative-definite matrix. The multi-dimensional 
Riemann function 

00 g g 

IJ(u) = L exp[2 L miui + L mjTj1mt] (44) 
ffilo···omg j=1 j,/=1 

(45) 

is then well-defined, too. We also introduce two vectors c and d(t) besides u 
by 

(46) 

where the point corresponding to the point oo on the other sheet is denoted 
by oo'. The time dependence of d(t) is determined later on. The solution of 
the Jacobi problern reads (see 5 and 7) 

~ d - 1 -
bn(t) = b L.t Cjg-l du. bn {IJ(nc + d(t))r ((n + 1)c + d(t))} , 

j=l J 

(47) 

where b is a constant and one differentiates with respect to the argument Uj 

defined in (45). Inserting (15) in the first row of (25), and taking into account 
(18), one obtains 

g 

f1.1(n) = IJ [J.LI(n)- Jlj(n)t 1 Rt(J.L!(n))a;; 1gr(Jll(n)) . (48) 
ltj=1 

Here, we stress the dependence of 9n on Jll(n) since 9n is a polynomial in 
A = Jll(n) according to (29). Now, the time derivative ofd(t) follows from 5, 
7, and is given by the equations 
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g g-1 

d(t) =±I: PI(n) 2: CjsJl/(n)R-~(Jli(n)) = 
1=1 s=O 

( 49) 

according to (48) and (29)0 The sum in the last expression 

M( ) - t J1/(n) - V(r, g) (50) 
r, g - 1=1 I1fti=df1I(n)- Jlj(n)] - V(g- 1, g) 

equals S(r- g + 1) for 1' ~ g- 1, and vanishes otherwiseo Here, V(g- 1, g) 
denotes the Vandermond's determinant 

V(g- 1, g) = (51) 11r 1(n) 0 0 0 1 

and V(r, g) is the modified Vandermond's determinant in which the column 
(fli-\n), .. 0 , f1~- 1 (n)) is replaced by (Jl'i(n), .. 0, Jl~(n))o S(m), (m = r- g+ 
1) is a symmetric function, 

S(m) = (52) 

which can be expressed by means ofrj ( n) from (15 )0 But Tj ( n) (j = 1, 0 0 0, g) 
can be expressed by means of different am 's and bm 's, and finally by the 
elementary symmetric functions Tj, (j = 1, 0 0 0 , 2g) from ( 18) 0 However, the 
dependence on am's and bm's is eliminated in (49), so that (49) can easily be 
integrated, 

g-1 

dj(t)=-L:cjsAst+dj(O) (j=l, .. o,g), (53) 
s=O 

where As are determined by the elementary symmetric Tj ( n), ioeo by constants 
of motiono 

We demonstrate the integrability for the periodic two-particle system and 
the k = 4 member of the hierarchyo Then 

(54) 

where P and E are constants of motion which are proportional to the total 
momentum and energy of the systemo 

In general, there are three possibilities: 
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1) The basic Toda lattice, when "L;L1 Cj,g-1 d~j = ft and Pn = <in· The 
last equality then allows a simple integration in (21), one obtains explicit 
formulae for Pn and qn. 

2) The periods of the lattice are g = 1 and g = 2. Then we use the 
l t . 2 2 - 1 d 2 2 2 - 1 ° l d l' 0 2 re a Ion an an+ 1 - 4 an anan+1 an+2 - 8 , respective y, an e Immate an+ 1 

and a;;+ 2 , respectively, from the lowest constant Hamiltonians, conserved 
quantities ( the total energy etc.) ofthe system in which one inserts (21) for bn. 
Suchexpressions are equations of degree two and three, respectively, for some 
unknown a;;. They can therefore explicitly be solved. The calculated values 
along with (21) for bn are inserted in Rk+l(n- 1) and thus also det.ermine 

by quadrature. The integration ofthe two and three particle system is reduced 
to quadratures. This eonclusion agrees wit.h the theorems of Liuville and 
Stäckel of the classical mechanics (see also 3, 4). Nevertheless, unlike the 
classical case, Hamiltonians in which not only quadratic moments of motion 
appear, are admit.ted. 

3) The integration of the remaining Toda lattice assumes that the equa­
tions of degree higher than four aretobe solved. As is well-known, this is not 
possible in general. Therefore, these lattices are integrable only in principle, 
but not explicitly. 
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Abstract. The role of spectrum generating algebras and dynamic symmetries in 
the study of scattering processes is briefl.y reviewed. 

1 Introduction 

Spectrum generating algebras (SGA) and dynamic symmetries (DS) have 
been extensively used in the study of bound state problems. Two notable 
examples are: (i) the study of collective states in nuclei (interacting boson 
model) with spectrum generating algebra U(6)[1] a.nd (ii) the study of rota­
tions and vibrations of molecules (vibron model) with spectrum generating 
algebra U(4)[2]. In general, it has been found that, for bound state problems 
in v dimensions with a finite number of states, a convenient SGA is U(v+ 1). 
The two examples mentioned above correspond to v = 5 and v = 3 respec­
tively. In the SGA approach to bound states, the Hamiltonian, H, and other 
operators, T, are expanded onto elements of a Lie algebra, Ga E 9, 

H =/(Ga) T = g(Ga) , (1) 

and all states are assigned to an irreducible representation [N] of g. ([N] is 
the total boson number in the interacting boson model and the total vibron 
number in the vibron model.) A dynamic symmetry is then that situation in 
which H is only a function of the Casimir operators, C;, of g and of a chain 
of subgroups of 9 :J 9' :J .. ·, 

H =/(Ci) (2) 

When a dynamical symmetry is present, all observables can be calculated 
in explicit analytic form. In particular, the energies of the quantum states 
are given explicitly in terms of the quantum numbers that characterize the 
states, through energy formulas. A typical example of these formulas is the 
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S 0 ( 4) dynamic symmetry of the vi bron model w herein the energy Ievels are 

given by 

E(N,w, L, ML) = Eo + A w(w + 2) + BL(L + 1), (3) 

with w, L, ML being the quantum numbers that characterize the states. 

In contrast to bound states, scattering states have not been investigated 

much in terms of SGA and DS. Apart from some early (1967) work by Zwan­

zinger (3] who investigated the scattering states of the Coulomb potential 

by making use of the dynamic symmetry introduced by Pauli in 1926, not 

much work was clone on this problern until the suggestion by the author 

of this article in 1981 that an appropriate SGA for scattering states in v 

dimensions could be the non-compact version U(v, 1) of U(v+ 1). Since then, 

a considerable amount of work has been clone on the subject. This article is 

abrief review of this work. 

2 The general scheme 

In its original formulation, SGAS for scattering were constructed by analytic 

continuation of SGA for bound states. Thus, starting from 9 = U(l/ + 1), it 

was suggested that, for scattering in v dimensions, 9* = U(v, 1) be taken as 

SGA. For problems with rotational invariance in JJ dimensions, thc algebra 

9* must contain the rotation algebra SO(v). A general scheme forscattering 

would then be provided by the lattice of algebras 

U(v) EB U(1) (I) 

/ \. 
U(l/, 1) SO(I/), (1) 

\. / 
SO(//, 1) (II) 

where the notation, direct sum EB, appropriate to algebras has been used, 

rather than that appropriate to groups, direct product 0. (Also, for !arge v, 

additional chains could be present.) The two chains would then provide two 

dynamic symmetries. Corresponding to each dynamic symmetry, there would 
be an explicit form for the observables in terms of quantum numbers. In scat­

tering theory, the observable is the cross section, which can be obtained from 

a knowledge of the S-matrix. This quantity thus assumes here the leading 

roJe. 
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The general scheme (2.1) was explicitly worked out in 1982 by the author, 
together with Alhassid and Gürsey[4] in the case of one-dimensional prob­
lems, v = 1, where y* = U(1, 1). The two chains in (2.1) correspond in this 
case to potentials of the Pöschl-Teller type ( Chain I) and of the Morse type 
(Chain II). For these two potentials, the S-matrix (or, in v = 1 dimension, 
the reflection and transmission amplitudes) can be computed in explicit form. 
From the S-matrix one can obtain the cross sections ( or, in v = 1 dimensions, 
the reflection, R, and transmission, T = 1 - R, coefficients.) The result is, 
for the Pöschl-Teller potential: 

R = ch(27rJf) + cos (21r.;:;+f) = 1 - T , 
(I) (2) 

where v is the potential strength in dimensionless units, v = (2Jl d2 jn?) 
V0 , f the energy in the same dimensionless units, f = (2Jl d2 fh 2 )E, and 
the potential is V(x) = V0 [th2(x/d) -1]. For the Morse potential, one has 
obviously 

R=1 , T=O , (JI) (3) 

for any f, and the potential is V(x) = V0 [e- 2x/d- 2o-x/d]. Although the 
result (2.2) is illuminating, it is not very useful from the general point of 
view. The reason is that, in one dimensional, the lattice of algebras (2.1) is 

U(1, 1) 

U(1) EB U(1) (I) 
? 

\.t 
50(1,1) (II) 

(4) 

and the two routes (I) and (II) contain the algebras U(1) and 50(1, 1) which 
are isomorphic, since they are trivially composed of one single element. One 
cannot therefore study the transition from one chain to the other. 

The case ofparticular interest and importance is obviously the case v = 3. 
The bound state part of the 3-dimensional problern has been extensively 
discussed in terms of U ( 4) . The two chains 
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U(3) {I) 
/" '\! 

U(4) S0{3) :::> S0{2) , {5) 
'\! /" (II) 

S0{4) 

correspond to potentials of the Pöschl-Teller ( or truncated harmonic oscilla­
tor) type and ofthe Morse type. Both these chains are ofinterest in molecular 
physics. One may suggest that the chains appropriate to scattering are: 

U(3) EB U{1) (I) 
/" '\! 

U(3, 1) S0{3) :::> 5'0{2) . {6) 
'\! /" (I I) 

S0(3, 1) 

The general scheme corresponding to this case, i.e. how to construct S-matrix 
for both chains(I) and {II) and for the intermediate situation between (I) and 
{II) has not been investigated up to now. It remains one of the challenges of 
algebraic scattering theory. 

3 Special cases. The Euclidean connection 

Although the general scheme remains to be explored, special approaches 
have been developed. In particular, an approach based on the generaliza­
tion of Coulomb-like problems has been fully exploited and its corresponding 
S-matrices have been found. This approach is based on pseudo-orthogonal 
algebras SO(n, m) and on their corresponding dynamic symmetries. To be 
precise, the approach starts from the non-compact algebra S0{2, v), where 
v is the number of space degrees of freedom, and considers the dynamic 
symmetry associated with the chain[5,6] 

S0(2, v) :::> S0{2) EB SO(v) :::> · · · (1) 

The quantum number associated with S0{2), called v, represents a param­
eter v = 0, ±1, ±2, · · ·, while SO(v) is associated with usual rotations in v 
dimensions. By expanding the asymptotic states of S0(2, v) into those of 
E(2) EB E(v), when E denotes the Euclidean algebra, it is possible to con­
struct S-matrices. The results of this construction, called Euclidean connec­
tion, are[5]: 
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(i) V= 1, 50(2, 1). 

The reflection amplitude, 'R.(k), is given by 

'R.(k) = r (v + ~ + if(k)) eivh+(k)--y-(k)]ei<P(k) 

r(v+~-if(k)) 
(2) 

Here "Y+(k),"Y-(k) and cjJ(k) are arbitrary real functions of k, while the func­
tion f(k) is obtained from the relation between the Hamiltonian, H, and the 
Casimir operator of SO(l, 2), C, 

(3) 

Since, for scattering states, the energy associated with the wave is Ek = k2 

(apart from the scale factor n2 /2J.t), and, for the continuous representations, 
the Casimir operator of S0(2, 2) can be written as - ( C + ~) = P(k), one 
has 

k2 = h [f(k)] 

which determines f(k) once the function h is known. 
(ii) V= 2, S0(2, 2). 

The S-matrix here is given by 

(4) 

S (k) = F [(m +V+ 1 + if(k)) /2] r [(m- V+ 1 + if(k)) /2] irf>(k) (5) 
m F((m+v+1-if(k))/2] F((m-v+1-if(k))/2( ' 

where cjJ(k) is an arbitrary real function and m is the two-dimensional angular 
momentum. 
(iii) V = 3, S0(2, 3) 

The S-matrix here is given by 
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5 (k)= r[(f+v+~+if(k))/2] r[(f-v+~+if(k))/2]e;q,(k) 
l r[(f+v+~-if(k))/2] r[(f-v+~-if(k))/2] , 

(6) 

where f is the ordinary 3-dimensional angular momentum. The cross section 
is given as usual by 

der 2 
d!t =I g(k, B) I , 

5e(k)- 1 
g(k, B) = Ee(2f + 1) 2ik Pc(cosB) . (7) 

Although the case I/ = 1 is not of particular interest, since In I= 1, i.e. 
the wave is entirely reflected, the structure of v = 2 and v = 3 is interesting. 
Even considering cj>(k) = 0, Eqs. (3.5) and (3.6) give a dass of exactly solvable 
S-matrices which depend on one parameter v. By specifying the function f( k), 
one can construct S-matrix models which can be used to study experimental 
data. Some work in this direction was clone by Wu[7] and by Amado and 
other[8]. 

The approach was also generalized to any n and m by Frank and others[9] 
with the result 

T (~ [f +V+ (n + m- 2)/2 + if(k)]) 
5t(k) = r (~ [f- V+ (n + m- 2)/2- if(k)l) X 

X T (~ [e +V+ (n + m- 2)/2 + if(k)]) eiq>(k) 
T (~ [f- V+ (n + m- 2)/2- if(k)]) 

(8) 

The method of Euclidean connection, which is based on the mathematical 
concept of expansion and contraction of Lie algebras, has stimulated further 
work in this direction[10,11]. Eq. (3.8) also shows the generic result that all 
S-matrices basedonorthogonal algebras are ratios of r- functions. 

4 Special cases. Coulomb-like problems 

The method of Euclidean connection can be used also to construct S-matrices 
for Coulomb-like problems. The starting point here is the degeneracy group of 
scattering states of the Coulomb potential in v dimensions (v ~ 2), 50(1, v). 
By expanding the asymptotic states of 50(1, v), onto the Euclidean states 
of E(v) it is possible to construct Coulomb-like S-matrices[5,6]. The resultes 
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of the construction are: 

The S-matrix is given by 

5 (k) - r (m + ~ + if(k)) ei<P(k) 

m - r (m + ~- if(k)) ' 
(1) 

where <f;(k) is agairr an arbitrary function of k and f(k) is abtairred from the 
relation between H and C. 

(ii) 1/ = 3, 50(1, 3). 

The S-matrix is given by 

s (k) = r (f + 1 + if(k)) ei<P(k) . 
· e r(f+1-if(k)) 

In the actual Coulomb case, <f;(k) = 0 and 

ßp 
f(k) = -2 ' 

Ii k 

(2) 

(3) 

ß = Z1 Z2 e2 and J1. is the reduced mass. One may note that the S-matrices of 
this section can be obtained from those of the previous section by setting v = 
1/2, </; = 2fn2 f(k), ancl using the duplication formula for the r-functions, 

1 
r(z) r(z + 2) = 21- 2z 7r112 r(2z). (4) 

In summary, the method of Euclidean connection allows one to construct 
S-matrices of the Coulomb-type in any number of climensions. 

50(3, 1) S-matrices have found use in the stucly of heavy-ion collisions. 
The point here is to consicler, as a model of heavy-ion scattering, one in which 
the S-matrix is given by 

5 (k) = r (f + 1 + iv(f, k)) 
l r (f + 1 - iv(f, k)) ' 

(5) 
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where v(f, k), called the algebraic potential, contains the 'potential' infor­
mation. The potential v(f, k) is taken as a combination of a Coulomb and a 
short-range interaction, 

v(e, k) = v~.(e, k) + v.(e, k) . (6) 

Both Coulomb and short-range interactions are parametrized in some way 
and the corresponding cross sections are calculated. This method has proven 
tobe of some use, although, as discussed in Sect. 7, the main interest is to 
deal with multichannel scattering. 

5 Algebraic potentials and inverse scattering 

As mentioned in the previous section, the potential v(f, k) is obtained by an 
appropriate parametrization of the data. However, both from the point of 
view of finding a suitable form v(f, k) and, vice versa, from the point of view 
of determining the 'true' configuration space potential, it is ofinterest to con­
sider the relation between v( f, k) and the potential V ( r). This relation can be 
easily obtained in the semiclassical, eikonal and Born approximations. In the 
semiclassical approximation, the relation is somewhat complex in form. It is 
discussed in Ref.[12] and it will not be reported here. In Born approximation, 
the relation is[13] 

(1) 

where '1/J is the digamma function. In eikonal approximation, the relation is 

J.l l+oo 1 v(i, k) ~- 2 V(b, z)dz; kb = e +- . 
2n 1/;(i+ 1) -oo 2 

(2) 

The relation between V(r) and v(f, k) can also be obtained, in general, by 
solving the inverse scattering problem. Much work in this direction has been 
clone, in particular by Scheid, Zielke and others[14]. For real potentials, the 
inversion procedure is rather straightforward, while for complex potentials it 
may lead to ambiguities. The algebraic method here could be of use, in the 
sense of providing the scattering amplitude for and f and k and thus of serving 
as an intermediate step between the data and the potential in configuration 
space. 
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6 Scattering of particles with spin 

The algebraic approach for spinless particles, discussed in the previous sec­
tions, can be generalized to include scattering of particles with spin. The 
simplest generalization is that in which the algebra of the relative notion, 
9n, is coupled to the spin algebra, 5U s (2). This method allows one to treat, 
among other problems, that of scattering of spin-1/2 particles, or, in gen­
eral of spin-5 particles in the presence of spin-orbit interactions, L · S. This 
method was introduced by the author in 1986[15] but it has not been used 
in practice. When applied to the special cases of Sects. 3 and 4, it leads to 
the 50(2, 3) S-matrix for scattering of spin -1/2 particles[15] 

where 

r [(c + u(±) + 3/2 + if(k)) /2] 
5t,j=l±~(k) = T [(f+ u(±) +3/2- i.f(k)) /2] X 

X T [ (f- u(±) + 3/2 + if(k)) /2] ei<f>(k) 

r [ (c- u(±) + 3/2- if(k)) /2] ' 
(1) 

(2) 

The case of 50(1, 3) was also treated. The algebraic description of this case 
is in terms of 

50(1, 3) EB 5U s (2) :::> 50L(3) EB 5Us (2) :::> 5UJ (2) , (3) 

where the orbital, L, and spin, 5, angular momenta are coupled to total J. 
In this case both diagonal, L · S, and non diagonal interactions were consid­
ered[15]. 

Recently, another very interesting approach to problems with spin has 
been introduced by Levay and Apagyi[16]. Instead of considering the algebraic 
structure g R E17 9s these authors treat scattering in terms of a single algebraic 
structure but consider non-standard realizations of this algebra. In particular, 
they consider the case g = 50(3, 1) and obtain the S-matrix (reflection 
amplitude) 
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r (j + 1 - ik) r ( ~ + ik) 
nj ( k) = (-t 1 _r_(j_+_1_+_i_k )-r-(7~---ik-) ' (4) 

with nj = 0 for j = Ji+ ~, nj = 1 for i = J!- ~. This S-matrix is a generalization 

of the S-matrix for scattering from a Pöschl-Teller potential. It should be 

noted that, since 

S0(3, 1) f. S0(2, 1) EB S0(3) , (5) 

i.e. S0(3, 1) cannot be split into the direct sum of 50(2, 1) and S0(3), the 

result of Ref.[16] is new. Its further generalization could be useful in heavy­

ion scattering when one of the colliding ions has spin=1/2. The method of 
Levay and Apagyi is also related to the method cliscussed in the following 

section for relativistic scattering. 

7 Relativistic scattering 

Spectrum generating algebras and dynamic symmetries can, in principle, be 

used to attack relativistic problems in the context of relativistic quantum 

mechanics. For bound state problems, a considerable amount of work has been 
clone in this direction by Barut, Bohm ancl others[17]. This work, however, 

focuses on Coulomb-like problems and makes use of infinite-component wave 

equations. A general scheme for finite component wave equations, as, for 

example, the Dirac equation, has not been worked out yet. The logic of this 

general scheme should be that of coupling the SGA that describes the space 

part, g R, wi th that descri bing the internal ( spin) clegrees of freedom, g s, 

(1) 

The algebra g can then be analytically continued in order to describe scat­

tering. The analytic continuation would involve only the space part 9R, 

(2) 

The explicit construction of such a scheme, both from bound state and scat­
tering problems remains a challenge. So far, only a special case has been 
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discussed, that of a Dirac particle in Coulomb field (Coulomb-Dirac prob­
lem)[18]. (This problern has also been solved by converting the first order 
Dirac equation into a second order equation and using the methods of previ­
ous section[19].) Forthis problem, one can use the algebraic structure of the 
space part in spherical coordinates, 

gR = S0(2, 1) EfJ S0(3) 
t t 

radial part orbital part 

together with the algebraic structure of the internal part, 

gs = S0(2, 1) EfJ 

t 
S0(3) 

p- matrices (j- matrices(spin) 

(3) 

(4) 

Since the algebras gR and gs are in this case identical, they can be combined 
in an obvious way. The orbital, L, and spin, S, parts are combined as 

S0(3) 
t 

{L1,L2,L3} 

EfJ S0(3) 
t 

{ (jl' (j2, (j3} 

S0(3) 
t 

{Jl, h, h} 

while the radial, M, and p-parts can be combined as 

S0(2, 1) EfJ 

t 
{J.ll' J.l2, J.l3} 

S0(2, 1) 
t 

{ ipl' ip2, ip3} 

S0(2, 1) 
t 

{N1, N2, N3} 

:::> S0(2) , 
t 

{N3} 

:::> S0(2) 
t 

{N3} 

(5) 

(6) 

Use ofthe Euclidean connection, produces, after some lengthy manipulations, 
the S-matrix for Coulomb-Dirac scattering in 3-dimensions, 

. (-"'- i1JJ.L/k) T().. + 1- i1JE/k) 
S~j (k) = exp [-m(A- t')] ).. - i7]E/ k T().. + 1 + i1JE/k) ' (7) 
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where l is the orbial angular momentum, j the total angular momentum, 
~ = (j + ~) for l = j- ~ and -(j + ~) for l = j + 1/2, ,\ = (~2 -772)1/ 2 

, 'TJ the usual Sommerfeld parameter 'TJ = Ze2 , and t the relativistic energy 
(k2- 'T/2)1/2. 

Another case that can be solved algebraically, although not reported in the 
literature, isthat of a relativistic spin-0 particle in a Coulomb field (Coulomb­
Klein-Gordon-problem). Forthis problem, there is no internal part, and one 
can use only the algebraic structure of g R to give the S-matrix for Coulomb­
Klein-Gordon scattering in 3-dimensions, 

s (k) = r(e + 1- iTJt/k) 
~. r(l+ 1 + iTJt/k) ' 

(8) 

which is a simple generalization of (4.2) and it reduces to it for small mo­
menta, k « J.l. 

The Coulomb-Dirac algebraic scattering theory could be extremely useful 
in analyzing scattering of high energy protons off nuclei (Dirac phenomenol­
ogy). The idea here could be that of considering scattering models in which 
the S-matrix is given by 

S.;(k) = exp [-i~(>. -i)j ( ~~ ~.~~:~m X 

r ( ,\ + 1- iv(-X, k)!) 
x-~------+-

r(,\+l+iv(A,k)~) 
(9) 

The Coulomb-Dirac problern could also be generalized by doing the step 
leading from Eq.(3.6) to Eq.(4.2) backwards. This will produce a wider dass 
of S-matrices with an additional parameters , v. 

8 Scattering of composite particle 

Although the use of SGA's and dynamic symmetries sheds some new light on 
one-particle scattering theory, it is not particularly useful, since the Schrodinger 
or Dirac equation for a single particle in a potential V can be easily solved 
with other means. An area where algebraic scattering theory can be of ex­
treme interest is instead that of scattering of composite particles. In this case, 
the problern becomes a many-channel scattering problern of difficult numer­
ical solution. An algebraic reaction theory was suggested by the a.uthor[15] 
and has been implemented in several cases. 
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For multichannel scattering, the algebraic S-matrix takes on the form[13] 

(1) 

where K is a diagonal matrix with the channel momenta, k01 , along its di­
agonal and M is the algebraic Jost matrix. For Coulomb-like problems, the 
algebraic Jost matrix has the form 

M = F(f + 1 + iv) 
r.e+ 1- iv) 

(2) 

where the argument of the F-function is now a matrix. For n channels, v 
is a n x n matrix, called a potential matrix. In order to calculate S, one 
first finds the matrix Z which diagonalizes K 112 v K- 112 . Since the matrices 
inside the F-functions in the numerator and denominator of (8.2) commute, 
the S-matrix is given by 

s = z D z- 1 (3) 

where D is a diagonal matrix whose diagonal elements are 

(4) 

where the >.~s are the eigenvalues of K 112 v K- 112 . 

Algebraic reaction theory, at least for spinless particles, has been exten­
sively investigated, especially in connection with heavy-ion scattering. For 
such a case, the S-matrix has been written as[13] 

st (k) = k1/2 [r(.e+ 1 +iv(f,k))] k-1/2 
0101' 01 r(.e + 1 - iv(.e, k)) 0101' 01' ' 

(5) 

with v(.e, k) written as a sum of a Coulomb and short-range interaction 

(6) 
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The quantities vc and v 8 are then appropriately pa.rametrized and cross sec­
tians are calculated. 

The application of algebraic reaction theory to nuclear reactions has re­
ceived considerable attention, especially by Lichtenthaler, and others[21] and 
by Ventura, Zuffi and others[22]. Examples are shown in the accompanying 
paper by Ventura. 

9 Interna! symmetry 

Although the use of algebraic methods reduces the complexity of coupled 
channel problems to a n x n matrix diagonalization, there still remains the 
problern of obtaining the potential matrices, vc and v 8 • When the number 
of channels becomes moderately large, n ~ 20- 30, this is still a formidable 
problem. Spectrum generating algebras and dynamic symmetries can be use­
ful here too, since one can exploit the internal symmetry of the colliding 
particles. The basic point is that the coupling between different channels is 
induced by transition operators, T, acting on the internal coordina.tes of the 
colliding objects. In the algebraic approach, these transition operators be­
come elements of the Lie algebra that describes the internal structure. For 
example, in the collision between two heavy nuclei, the transition operators 
can be taken to be elements of U(6), the algebra. of the interacting boson 
model, while in the collision between two molecules, the transition operators 
ca.n be taken tobe elements of U(4), the algebra of the vibron model. Thus, 
for collisions between two objects, A and B, one ha.s the combined structure 

(1) 

where gA and 9n describe the internal structure of the two objects and 9R 
is the algebra of the relative motion. This approach reduces the number of 
parameters considera.bly. For example, in nuclei, multipale excitations with 
multipola.rity >. would produce an algebraic potential ma.trix which can be 
written a.s[13] 

- {2>:t1 j' V01 1j',aj(k)- V>,(J, k)y ~ (-) 

(j' >. j) 
ß;..(o/j' II G;.. II o:j) · 

0 0 0 
(2) 
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In this expression, G>. is a generator of U(6) with multipolarity ,\ and ß>. 
is the strength of the interaction, while V>. ( J, k) is one of the expressions 
of Sect. 4 which parametrizes the scattering process. This potential matrix 
is thus obtained in terms of only one parameter, ß>., instead of n(n- 1)/2 
required if each entry in the potential matrix is taken as a free parameter. 

Irrtemal symmetries can be (and have been) also used in scattering, sep­
arately from the algebraic approach, in a mixed scheme in which the relative 
motion is treated in one of the usual approximations, while the internal de­
grees of freedom are treated algebraically. A particularly useful and interest­
ing approximation is the eikonal approximation. In this approximation, the 
scattering amplitude between some initial and final state is given by 

(3) 

where q = k' - k is the momentum transfer and x(b) the eikonal phase. 
This phase depends on the interaction between the incoming particle and 
the target. If the target is described algebraically, one is led, alfter some 
manipulation, to the evaluation of a matrix element, which, schematically, 
can be written as 

(Irrep of 9 I eiaG"' IIrrep of 9) , (4) 

where lrrep of 9 denotes an irreducible representation of 9. This matrix 
element is nothing but a group element of 9. This matrix element is nothing 
but a group element of 9, i.e. a generalization of the familiar Wigner D­
matrices 

(5) 

Algebraic methods are obviously very useful in the evaluation of these matrix 
elements. A large literatme exists on this subject, which initiated with the 
work ofGinocchio, Amado, Bijker, Mengoni and others and has continued up 
to recently. This work has dealt with both nuclear and molecular physics by 
considering scattering of high energy protons off nuclei[23] and of high-energy 
electrons off molecules[24-26]. This mixed approach has received considerable 
attention, but it is somewhat outside the scope of this article and it will not 
be reviewed in detail. 
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10 Conclusions 

Contrary to the case of bound state problems, the algebraic approach to scat­
tering and reactions has not been fully exploited yet, with the only exception 
of Coulomb-like problems for spinless particles. Areas where further work is 
needed are: (i) the study of a general scheme for more than one dimension; 
(ii) applications of this general scheme to atom-atom and molecule-molecule 
scattering where Coulomb-like S-matrices arenot appropriate; (iii) the study 
of a general scheme for relativistic scattering; (iv) applications of this gen­
eral scheme to hadron-hadron collisions; (v) the explicit introduction of spin 
in reactions which, at the moment, has been treated in the rotating-frame 
approximation; (vi) applications of this scheme to heavy-ion collisions. 

Despite these shortcomings spectrum generating algebras and dynamic 
symmetries have shed some new light on scattering processes and, as such, 
have played a role in the study of complex reactions. 

This work was supported in part under D.O.E. Contract DE-FG02-91ER-
40608. 
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Abstract. The algebraic coupled-channels formalism based on 80(3,1) symmetry, 
originally proposed by Alhassid and lachello {1989) for the description of heavy­
ion reactions in the Fraunhofer diffraction regime, appears to be applicable also to 
reactions in the Fresnel regime, at the cost of some modifications, whose importance 
increases with decreasing energy and is crucial in the proximity of the Coulomb 
barrier. 

1 Original Formation 
of the 80(3,1) Scattering Theory 

The algebraic scattering theory oflow-energy heavy-ion reactions proposed by 
Alhassid and Iachello (1989) generalises to many reaction channels the well­
known analytic form of the S matrix for nonrelativistic Coulomb scattering 
of two spinless particles of charges Zp, Zt (in units of the electron charge, e) 
and masses Ap, At (in atomic mass units, M): 

sc = r(l + 1 + iry) = e2ia, 
1 r(z + 1- iry) 

(1) 

Here, F(z) = F*(z*) is the Euler gamma function of complex argument, 
so that rrt = arg(F(l + 1 + iry)) is the Coulombphase shift corresponding to 
the orbital angular momentum l , and 'f/ is the Sommerfeld parameter: 

(2) 

where J.l = ApAtM/(Ap +At) is the reduced mass of the system, a = 
e 2/(n2c) is the fine structure constant, k and E = n2k2 /(2J.l) are the wave 
nurober and energy of relative motion in the centre-of-mass frame, respec­
tively. 
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The scattering amplitude, as a function of the scattering angle in the c. 
m. frame, 8, reads 

1 00 

fc(8) = 2ik 2:)21 + 1)Pt(cos(8))e2i"1 

1=0 

= - .T/2 8 exp(-iTJln(sin2 (8/2)) + 2ia-0), (3) 
2ksm ( 2) 

and corresponds to the well-known Rutherford formula, for 8 -:j:. 0. 
The functional form (1) can be derived by purely algebraic methods, (Wu 

1985), since the Hamiltonian of the problem, at fixed c. m. energy, E, is 
a simple function of a quadratic Casimir invariant of the S0(3,1) algebra 
generated by the three components of the orbital angular momentum, L, and 
the three components of a modified Runge-Lenz vector, K: 

(4) 

where the linear momentum, P, and the angular momentum, L, are both 
expressed in units of n, and both signs on the right-hand-side offormula (4) 
are acceptable. The Hamiltonian reads: 

(5) 

The most general scattering problern with S0(3,1) symmetry is obtained 
by replacing in the Runge-Lenz vector (4), in the Hamiltonian (5), andin the 
S matrix (1) the Sommerfeld parameter, TJ, with an arbitrary real function of 
k, v ( k), henceforth called the algebraic potential. 

Such a simple potential, however, is not fit for describing heavy-ion reac­
tions, which result from a combination of Coulomb and nuclear interactions, 
v = TJ + v N ; owing to the latter, the partial waves of low angular momentum 
are absorbed from the elastic channel and scattered to reaction channels. The 
simplest way of producing this effect in the formalism is to make VN complex 
and angular momentum dependent: 

VN(k, l) = (l-l ) , 
l+exp T 

VR + ivi (6) 

thus breaking the S0(3,1) symmetry. In order for the S matrix be unitary, it 
is necessary that v I 2: 0. 

As a consequence offormula (6), the reflection coefficient, IS1I, as a func­
tion of l, shows a strong absorption profile, since it is 0 for l < < l0 and 
raises to 1 in an interval of size ..:1 centred on l 0 , which plays then the role of 
a grazing angular momentum. 

The dimensionless potential depths, v R and v I, the critical angular mo­
mentum, l0 , and the diffuseness parameter, Ll, depend, in general, on k. 
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Simple semiclassical arguments suggest the following dependence ( Alhassid 
and Iachello (1989)): 

Vj(k) = v~0)+v?)k;(j=I,R) 

Ll(k) = d(l)k; 

lo(k) = roJP- k1, (k > kB), 

(7) 

(8) 

(9) 

where v~}), d(l) and r0 are constant. In Eq. (9), kB is the wave number 
correspon'ding to the energy of the Coulomb barrier in the centre-of-mass 
frame ( Broglia and Winther (1991)): 

EB = n2k1 = ZpZte2 (1- ~)' 
2J.l rB rB 

(10) 

where the diffuseness parameter, a, is of the order of 0.63 fm, and the barrier 
radius, rB, is given, to a good approximation, by the formula (Broglia and 
Winther (1991)) 

(11) 

Inclusion of reaction channels in the algebraic formalism is simple if all the 
channel spins are zero. The S matrix at given orbital momentum, L (the same 
for all channels), becomes an x n matrix, where n is the number of reaction 
channels explicitly taken into account ( Alhassid and Iachello (1989)): 

L _ lf 2 [F(L+1+iV(L,k))] -1/2 _ 
Saß - ka F(L + 1- iV(L, k)) aßkß (o:, ß - 1, ... ' n). (12) 

In the argument of the gamma functions, L + 1 multiplies the n x n iden­
tity matrix, and V , the n X n potential matrix, is symmetrical, because of 
invariance under time reversal. The channel wave number, ka , is connected 
with the entrance value, k1, by the reaction Q-value of channel o:: 

n2k~ n2ki Q 
2J.la = 2J.ll + a ' 

(13) 

where the reduced mass, J.la, might differ from J.ll, if o: were a rearrangement 
(nucleon transfer) channel. 

The gamma functions of matrix argument are n x n matrices, too, defined 
through their integral representation 

F(Z) = 1oo exp[(Z- 1)lnt- t]dt , (14) 

provided the matrix exponential in the integrand exists and the integral con­
verges. 
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As a consequence of Eq. (14), the recurrence relation F(Z + 1) = ZF(Z) 
holds for matrix arguments, too. Moreover, the r matrices are easily dealt 
with in a representation where their argument is diagonal, since (F(Z));j = 
r ( Z;;S;j), for Z;j = Z;;S;j. 

In order for S be unitary, its spectral norm, 11511, should not exceed unity 

11511 = Jmax>.s+s ~ 1, (15) 

where As+s derrotes a generic eigenvalue of 5+ 5. 
If some reaction channel has nonzero spin. as is the case for inelastic 

scattering, formula (12) cannot be applied any more, since L is no Ionger a 
multiple of the n x n identity matrix, but a diagonal matrix with different 
La 's in different channels, so that L and V do not commute; neither do the 
gamma matrices, whose ratio is not defined any more. 

In order to reduce the multichannel problern wit.h spin to a spinless one, 
that makes it possible to use formula (12) for the S matrix, Alhassid and 
lachello (1989) resort to an algebraic version of the rotating frame approxi­
mation, introduced in the traditional coupled-channels approach by Tanimura 
(1987), studied in detail by Esbensen, Landowne, and Price (1987), and valid, 
in the form outlined below, when the spin of the entrance channel is zero, 
i. e. for even-even projectiles on even-even targets. This approximation re­
quires, in configuration space, the description of the reaction in a rotating 
frame with the z-axis along the separation vector, r, of the interacting ions. 
In that frame, the interaction potential conserves the projection of the chan­
nel spin along the z-axis, s0 . The centrifugal potential is not diagonal with 
respect to so, but it can be replaced with a channel-independent barrier, 
J ( J + 1) / (2tta r 2), where J is the total angular momentum. Ifthe interaction 
potential is expanded in multipoles, only the tt = 0 component of each mul­
tipolarity, .>., is effective and the coupled- channels equations have the same 
structure as in the spinless case. 

If only target excitations are explicitly taken into account, the off-diagonal 
elements of the potential matrix, V, can be written in the simple form (Al­
hassid and Iachello (1989)): 

J 1 , s' ( s' 
V"', s', as = yi4';E>. V>.(J, k)..\( -1) O ; ~) ß>-s' < s'IIG>.IIs > . (16) 

Here, s' is the spin of the exit channel, c/, and s the spin of the entrance 
channel, a, and 5. = J2A + 1; V>. is the algebraic form factor for a transition 
of multipolarity A, while ß>. is a normalization factor playing the role of a 
deformation. The reduced matrix element of the transition operator, G>., is 
defined in the following version of the Wigner-Eckart theorem: 

< s'm'IIG~IIsm >= (s.\mttls'm') < s'IIG>-IIs > . (17) 

The diagonal matrix elements have the form already introduced in the 
one-channel case: 
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VJ _ VaR(k) + ivar(k) 
asas - 1 + exp(l1:") + 17a , (18) 

where 17a is the Sommerfeldparameter in channel a. At this point, a choice 
has to be made for the transition form factors, V>.: the analytic formulae 
adopted by Alhassid and Iachello (1989) mirnie in angular momentum space 
the expressions commonly adopted in configuration space. In fact, the nuclear 
form factor is 

VN (l, k) = _ [!!:... UR(k) + iur(k) ] ' 
aß dl1+exp[(l-lo)/..1 aß 

and the Coulomb form factor is 

l ~ loc 
l ~ loc 

(19) 

(20) 

In the off-diagonal form factors (19) the geometric parameters loaß and 
daß are taken to be the arithmetic mean of the corresponding values in 
channels a and ß; 

2 Elastic and Inelastic Scattering 
N ear the Coulomb Barrier 

(21) 

The formalism described in the previous section was originally applied to light 
heavy-ion reactions, such as 160 + 24Mg at E = 27.8 MeV (Alhassid and 
lachello (1989)), well above the Coulomb barrier, estimated from formulae 
(10-11) of the order of 15.0 MeVforthis system. The Sommerfeldparameter 
from formula (2) is 17 ~ 8.9 and the elastic and inelastic angular distributions 
show large oscillations typical of the Fraunhofer diffraction pattern, expected 
on condition that 

(22) 

where the grazing angle, Bg, is connected with the sum, R, of the two nuclear 
radii by the formula 

(23) 

The formalism summarized in Section 1 allows satisfactory reproduction 
of experimental angular distributions in the Fraunhofer regime, characteristic 
of light heavy-ion reactions above the Coulomb barrier. For heavier systems 
above the barrier, the high value of 17 may break condition (22) for the validity 
of the Fraunhofer regime, and , as soon as p > 1, one observes a transition 
to the Fresnel diffraction regime, which is a fortiori valid at smaller E, thus 
at higher 17, near, or below the Coulomb barrier. 
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When E :::; En, however,the form factors for elastic and inelastic scat­
tering may require important modifications. For instance, the simple Woods­
Saxen form ( 6) of the nuclear potential yields oscillations at backward angles 
in the elastic cross sections, not seen in experimental data. As for inelastic 
scattering, the cusp point of the Coulomb form factor (20) moves towards 
loc = 0 when E approaches En, and causes unrealistic oscillations in the 
inelastic angular distribution, even in the absence of a nuclear excitation. 

In order to find a more suitable analytic form for the nuclear potential 
near the Coulomb barrier, one can exploit the fa.ct that the inverse scat­
tering problem, of determining the potential from a given S matrix, rather 
complicated in configuration space, is easy to solve in angular momentum 
space (Lichtenthäler et al. (1991)), in the representation where the S matrix 
is diagonal, by expanding the matrix elements, s~co given by formula (12), 
in a Taylor series around a first-guess potential, via· To first order in the 
expanswn: 

where 
SoL = T(L + 1 + i'TJa + ivia) 

"'"' F(L + 1- i'TJa- ivic,) ' 
(25) 

and '1/J(z) = fz lnF(z) is the digamma function. For high partial waves, 
with L ::=: 2L900 where L9a is the grazing angular momentum in channel a, 
v~"' ~ 0 and Eq. ( 25) reduces to pure Coulomb scattering. Iterativesolution 
of eqs. ( 24-25) converges quickly for IS~al < 1. After obtaining V La in the 
representation where the S matrix is diagonal, one goes back to the original 
representation, by applying to the diagonal potential matrix, VLa, the inverse 
of the similarity transformation that diagonalised the S matrix. A word of 
caution is necessary, since the presence of the complex logarithm in Eq. (24) 
makes the relation between S and v multivalued and further restrictions are 
required in order to determine v uniquely. The adopted restrictions are: 

(i) lim VLa = 0; 
L-+oo 

(ii) IIm(ln(S;-;1)- Jm(ln(s;"'))l < 211' 

An extensive analysis of elastic angular distributions for the 160 + 63Cu 
system at twelve laboratory energies, rauging from 39 MeV, just below the 
Coulomb barrier, to 64 MeV (Lichtenthäler et al. (1994)) made use of a simple 
Woods-Saxon potential with energy independent parameters in configuration 
space in order to reproduce the elastic scattering cross section, and to de­
termine accordingly the elastic S matrix in angular momentum space. The 
algebraic potential in 1-space was then obtained by iterative solution of eqs. 
(24-25). 
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The main results of the analysis were the following: while the imaginary 
part of the algebraic potential, at fixed energy, is positive for L = 0 and goes 
quickly to zero for L > L9 , in such a way that it can be approximated roughly 
by a Woods-Saxon shape in 1-space, the real part bends down to negative 
values for L ::::; L 9 : the higher the laboratory energy, the more enhanced the 
bending. 

The interpretation· of this effect is that there is a repulsive term in the 
potential that makes the nuclear deflection function, B(L) = 2-!JrtSR(L) pos­
itive for L ::::; L9 , where JR is the real part of the nuclear phase shift. At 
higher angular momenta, L > L9 , the real potential becomes positive, goes 
through a maximum and then decreases exponentially with increasing L, as 
expected for an attractive potential. 

The behaviour of VN as a function of L obtained in the inversion procedure 
outlined above lends itself to the following parametrization: 

(26) 

with 
VR(k)fR(k, L) + ivi(k)fi(k, L), (27) 

and 
1 

/j(k, L) = L L (j = R, I) (28) 
1 + exp( ~ 01 ) 

J 

are Woods-Saxon forms with different La and Ll for the real and imaginary 
part ofthe potential (Rand I, respectively), and a is an expansion parameter. 

The real part of the potential: 

(29) 

thus receives a negative contribution from the square of the first-order imag­
inary part, which can be interpreted as a reflection in the imaginary well. 

If a is set to unity, for simplicity's sake, formula (26) has six adjustable 
parameters, namely two depths, two grazing angular momenta and two dif­
fuseness parameters, that allowed Lichtenthäler et al. (1994) to obtain a very 
accurate reproduction of the algebraic potentials derived by inversion of the 
elastic S matrix at twelve laboratory energies of 160 + 63Cu. 

Plotting the real and imaginary nuclear potentials versus energy in the 
laboratory frame, Etab, reveals an interesting behaviour in the real part, which 
goes through a maximum at Etab ~ 43 MeV, and, after a small decrease, 
remains constant up to the highest energy taken into account in the analysis, 
Etab = 64 MeV. This maximum in the real potential is necessary for repro­
ducing the principal diffraction maximum of the experimental elastic cross 
section at intermediate angles, clearly seen above the Coulomb barrier. As 
for the imaginary potential, it steadily increases with increasing Etab· 

This trend of Re ( v N) versus Et ab recalls the threshold anomaly of the 
real optical potential used in the Schrödinger equation in configuration space, 
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where the effect is explained by means of a dispersion relation that connects 
the real and the imaginary optical potential, and is a consequence of the 
principle of causality. To test the algebraic potential for a possible dispersion 
relation, we have made a linear approximation to Im( v N )( Etab), shown in 
Fig.1, computed Re( v N )( Etab) according to the dispersion formulae of Ma­
haux et al. (1986) and plotted it (the solid curve in Fig.1) in comparison 
with the twelve values that reproduce the experimental elastic cross sections. 
The discrepancy between 'experimental' and calculated Re( VN) seems to in­
crease with increasing energy, but might be due, at least in part, to the 
fact that we approximated Im(vN) in l-space with a simple Woods-Saxon 
form,neglecting there second order effects , which are included in Re( v N). 
Therefore, the problern requires, and deserves, further investigation. 
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Fig. 1. Algebraic potential vs lab. energy 

We come now to the treatment of inelastic sca.ttering: a.t energies below 
a.nd nea.r the Coulomb barrier, the dominant role is played by Coulomb exci­
tation, ofmultipolarity .A = 2, while the main effect ofthe nuclear interaction 
is to reduce the Coulomb scattering cross section at large angles. Being in 
a region of large TJ's, we assume that a semiclassical approach to Coulomb 
scattering makes sense, and try to derive from it a. simple analytic formula. 
for the Coulomb form factor. 

The trajectory of relative motion of the two ions is thus approximated by 
a hyperbola of eccentricity f > 1, connected with the scattering angle in the 
centre-of-mass frame, B, by the relation 
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(} . (1) 
2 =arcsm~. (30) 

The distance of closest approach of the two ions is a simple function of c 

(31) 

and the characteristic collision time can be estimated by means of the relation 

b~ Tc=-= -b. 
Vrel 2E 

(32) 

The collision time is essential in determining an upper bound to the en­
ergy, E1, ofthe states ofthe target, initially at energy E;, that can be sizeably 
excited during the collision, namely those states for which the adiabaticity 
parameter 

(33) 

does not exceed unity, Q (= Ei- E1) being the reaction Q-value. 
All the above quantities are thus simple functions of c, which, in turn, 

is connected with the orbital angular momentum, L in units of n, by the 
following formula, valid for L ( and 1]) > > 1: 

JL(L+1) ~ L+~ = 17~ (34) 

where 1] is the Sommerfeld parameter. 
A qualitative estimate of the amplitude of Coulomb transition with mul­

tipolarity A from state "P; to state "Pf is given by Broglia and Winther (1991): 

I . (B e)l - 21r Zpe I< "p,nc",II"P; >I J!c(O,f") (35) 
Xz...+f ' - (A + :i-) 3/ 2 nvrel BJ b-" 

Here, < "PJIIG",II"P; > is the reduced matrix element of an electric mul­
tipole operator, s f is the spin of the final state, and the adiabatic cutoff 
function, fc(B,e), can be approximated with a simple exponential: 

(36) 

where, for the most important multipolarity of transition to the low-lying 
states of the target, A = 2, a2 ~ 3.45. 

At this point, we assume that the Coulomb form factor is proportional to 
IXi-td < "P,IIG",II"P; >I and express it as a function of L, since both e and 
b depend on L through the inverse offormula (34): 

f = 
(L + 1)2 

1+ 2 

"'2 
(37) 
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We thus obtain for the Coulomb form factor, vc, as a function of E and 
L: 

where 

(39) 

One should remember, in any case, that formulae (35-37) give only a 
rough estimate of the modulus of the Coulomb transition amplitude; that is 
why we take the freedom of adjusting a.x in Eq. (36) and vß(E) in Eq. (38) 
on experimental data of inelastic scattering. 

In order to check the angular momentum dependence of the proposed 
Coulomb form factor (38), we have performed coupled-channels calculations 
of pure Coulomb excitation in heavy ion reactions by means of the ECIS94 
code ( Raynal (1994)): Fig.2 shows the L-dependence offormula (38) in com­
parison with the ISaL,aLI matrix element corresponding to a pure Coulomb 
excitation of the 2i state of 64 Zn, bombarded with 160 at Etab = 46 MeV, 
with multipolarity >. = 2 and third component f.1. = 0. The two functions 
are arbitrarily normalized to 1 at Lc = 30, while the Sommerfeldparameter 
in the elastic channel is 1J ~ 21. 

10,---------.----------r--------~---------. 

··· ... 
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0.01 

···· ... _ 

Semlclasslcal F.F. -
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• ... 

0.001 '------------'------------'-----------'-----------' 
0 W 100 1W 200 

Angular Momentum, I 

Fig. 2. Coulomb form factor vs angular momentum 
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As mentioned in Section 1, the algebraic version (16) of the rotating frame 
approximation cannot be applied to systems with nonzero spin in the entrance 
channel, e. g. odd-mass targets, like 65Cu, considered by Lichtenthäler et al. 
(1992), who suggested a more general approximation, where, in the arguments 
of the gamma matrices, the orbital angular momenta, La, are replaced with 
the total angular momentum, J, only in the kinetic matrix, L + 1 -t J + 1, 
but not in the potential matrix, whose elements are, instead of (16), 

- 1-E.x ( -1)J-s" iL'-L-.X Li/ Sß (LL'OOIA.O) 
y'41r 

x W(LL'so:sßi.AJ)v~ß < sßiiG.xllso: >, 

where W is a Racah coefficient. 
The scattering amplitudes are written in the form (Satchler (1983)): 

y'41r 
---:--k L'LEL'EJ(Lso:Omo:llmo:) 2z o: · 

x (L'sßm'mßllmo:)(SgL',o:L- 6o:ßhL'6sasß) 

X exp(io-o:L + ilTßL')Y[:' (11) . 

( 40) 

( 41) 

Here, the z-axis has been chosen in the direction of the incident beam; 
moreover, m' mo: - mß, and 

( 42) 

When the spin of the entrance channel is different from zero, the elastic 
S matrix element, S{.L o:L> computed in the present approximation, does not 
match exactly the Co~lomb s matrix, s;;L aL = exp(2iO"aL), at high J, and 
formula ( 42) would introduce spurious ter~s in the sum over partial waves 
( 41). These spurious terms are avoided by replacing formula ( 42), for ß = a, 
with 

where 

~ J _ Sf.L,aL 
SaL,aL- sc-

aJ,aJ 

r(J + 1 + iTJo:) 
r(J + 1- iTJo:) 

3 Results, Comments and Outlook 

(43) 

(44) 

The formalism described in the previous sections is applied, to an increasing 
degree of complexity, to elastic and inelastic scattering of 160 projectiles by 
Ni and Cu targets: in the case of nickel, the experimental data, recently 
published by Chamon et al. (1996), refer to laboratory energies in the 34-37 
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MeV interval, below the Coulomb barrier of the system, so that the only 
sizeable reaction, in addition to elastic scattering, is inelastic scattering to 
the 2t state of the Ni target, where Coulomb excitation of multipolarity 
>. = 2 plays a dominant role. The main effect of the nuclear interaction is 
to reduce the cross sections at backward angles, as shown by Chamon et al. 
(1996) in their coupled-channels analysis of the data performed by means of 
the ECIS code (Raynal (1994)). 

Since the spin of the entrance channel is zero, it is possible to resort to 
the algebraic version of the rotating frame approximation, outlined in Section 
1, thus reducing the problern to a simple and fast two-channels calculation, 
whose results are shown in the following figures for different nickel isotopes 
and incident energies, as a function of the scattering angle in the c.m. frame. 
As usual, the elastic cross sections are relative to the Rutherford cross section 
at the same angle, u /uR ( 0). The fits to the experimental data have compara­
ble accuracy to ECIS and aresimpler and faster to obtain. A few preliminary 
results of the analysis, still in progress, are shown in the following figures for 
58Ni (Figs. 3, 4) and for 60Ni (Figs. 5, 6), at Etab = 35.9 MeV. 

It is to be pointed out that the diagonal terms of the potential matrix 
contain small, but significant nuclear contributions, which include, in their 
real part, the second-order effects shortly described in Section 2. As expected, 
inelastic scattering is dominated by Coulomb excitation, and is thus a good 
test of the semiclassical approach of Section 2, which, in spite of its extreme 
simplification, seems to work remarkably well. 

1.02 .----.----,,.-----,---.-,.-,-----,----..---.----, 
016+Ni58, EI= 35.9 MeV -
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0.99 

....,. 
'§ 0.98 
a: ... 
-~ 0.97 

~ 
g, 0.96 
Ui 

0.95 

0.94 

0.93 

0.92 '----'----''----'----'----'-----'---'---'----' 
0 ~ ~ 00 00 100 1~ 1~ 100 100 

Centre-ol-Mass Angle (Degrees) 

Fig. 3. 16 0 + 58 Ni: Elastic scattering at Elab = 35.9 MeV 
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Fig. 4. 16 0 + 58 Ni: lnelastic scattering at Elab = 35.9 MeV 

A fundamental ingredient of its success is the Q-value dependence in the 
adiabatic cutoff function offormula (38). The Q-value dependence of the off­
diagonal terms of the potential matrix had been overlooked in the original 
formulation given by Alhassid and Iachello (1989), but its importance in re­
producing the results of traditional coupled-channels calculations was already 
pointed out by Alonso et al. (1992) in their algebraic calculations of multi­
ple transfer of nucleon pairs for the system 112 Sn + 120 Sn at bombarding 
energies around the Coulomb barrier. 

A second set of coupled-channels calculations refers to the already quoted 
system, 160 + 63Cu, measured by Pereira et al. (1989) at incident energies 
between 39 and 64 MeV. Here, the s = 3/2 spin of 63Cu prevents us from 
using the rotating frame approximation of Section 1, and we resort to the 
more general isocentrifugal approximation of Section 2. 

The analysis is complicated by the fact that the measured inelastic cross 
sections are due to cumulative excitation of five low-lying Ievels of 63Cu, 
not resolved in the experiments. It is thus necessary to resort to a realistic 
structure model of odd-mass nuclei, and to compute, within its framework, 
the E2 transition matrix elements among the five excited states and the 
ground state. The most suitable model is, in our opinion, the Interacting 
Boson-Fermion Model (Iachello and Van Isacker (1991)), that exploits an 
underlying Spin(5) Bose-Fermi symmetry of the Hamiltonian describing the 
low-lying excitations of 63Cu. Form and parameters of the Hamiltonian used 
in the present analysis are briefly discussed by Lichtenthäler Filho(1994). It is 
worth pointing out that this is a successful example of simultaneaus algebraic 
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Fig. 5. 16 0 + 60 Ni: Elastic scattering at Elab = 35o9 MeV 

description of relative motion of interacting ions, based on SO (3, 1) symmetry, 
and of internal excitation of the target, based on Spin(5) symmetryo 

As shown in the following Figso7,8, referring to Etab = 46 MeV, both 
elastic and cumulative inelastic scattering to the five lowest-lying Ievels of 
63Cu are satisfactorily reproducedo The analysis was performed a.t twelve 
bombarding energies and the comparison of calculated and experimental cross 
sections presented elsewhere (Lichtenthäler Filho( 1994)) 0 

The same experiment (Pereira et al. (1989)) provided, in addition to elas­
tic and inelastic scattering, also data on proton transfer from the 160 projec­
tile to the 63Cu target, so as to form the 64 Zn isotope, either in its ground 
state, or in the 2i state, at E* = 00992 MeV , and on fusiono 

The inclusion of nucleon transfer channels in the formalism is not difficult, 
at least in the no recoil approximation, following semiclassical arguments 
analogaus to Coulomb excitation, and discussed in detail by Broglia and 
Winther (1991)0 The following Figso9,10 show preliminary calculations of one 
proton transfer, again at Etab = 46 MeV 0 The calculations of proton transfer 
are in progress, and will be presented elsewhere, together with the relevant 
formalismo 

Once a realistic description of quasielastic reactions, including nucleon 
transfer, is obtained, also the fusion cross section should be reproduced in 
our algebraic coupled-cha.nnels ca.lculations, so as t.o get a global overview of 
hea.vy ion reactions in the proximity of the Coulomb ba.rriero 
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Fig. 6. 16 0 + 60 Ni: Inelastic scattering at Elab = 35.9 MeV 

The formalism discussed in the present work is applied to the Fresnel 
diffraction regime, charact.erized by large values of the Sommerfeld param­
eter, and might require modifications for light heavy-ion reactions, in the 
Fraunhofer regime. In that case, however, deeper microscopic insight into 
excitation and relative motion of nucleon clusters, characteristic of the struc­
ture and reactions of light nuclei, might lead to a considerable improvement 
of the algebraic scattering theory (Cseh (1996)). 

As a final remark, we would like to point out that a rigorous treatment 
of spin degrees of freedom is highly desirable, in order to make the algebraic 
coupled-channels formalism fully competitive with the traditional one. An 
interesting perspective is provided by recent studies of nonstandard matrix 
realizations of SO ( n, 1) generators, where spin is explicitly taken into account 
(Levay (1995), Levay and Apagyi (1995)). 
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Fig. 7. 16 0 + 63 Cu: Elastic scattering at Elab = 46 MeV 
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Fig.S. 16 0 + 63 Cu: Inelastic scattering at Elab = 46 MeV 
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Fig. 9. 16 0 + 63 Cu: Protontransfer to the 0{ state of 64 Zn 
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Fig. 10. 16 0 + 63 Cu: Protontransfer to the 2{ state of 64 Zn 
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Algebraic Scattering Theory 
and Light Heavy-lon Reactions 

J. Cseh 

Institute of Nuclear Research of the Hungarian Academy of Sciences, 
Debrecen, Pf. 51. Hungary-4001 

Abstract. The similarities and differences between the Algebraic Scattering The­
ory and the (Semimicroscopic) Algebraic Cluster Modelare discussed. Basedon this 
comparison suggestions are made for new kind of applications and for an alternative 
formulation of the scattering model. 

1 lntroduction 

The basic problems of scattering theory and of duster studies of bound and 
quasibound states show remarkable similarities. As a consequence the meth­
ods applied in the two fields are also close to each other. Recently algebraic 
approaches have been applied in both areas. In this contribution the simi­
larities as well as the differences between these group theoretical models are 
discussed, and based on this comparison, new ways are suggested for the 
extension and application of the Algebraic Scattering Theory. 

In scattering theory we are interested in describing the relative motion of 
two interacting particles ( A and B). Their distance vector changes from minus 
infinity to plus infinity. The energy spectrum of the system is continuous. 

When the interaction shows a dynamic symmetry, i.e. when the Hamilto­
nian of the system commutes with the elements of a Lie-algebra ( G R) (Schiff 
1968) the problern can be solved by purely group theoretical methods. One 
obtains a closed formula for the scattering matrix, which provieles us with 
the cross section. 

If the two particles do not have any internal degrees offreedom, we have a 
single channel problem. If the particles have internal degrees offreeclom, then 
we are facecl with a multichannel problem. If group theoretical moclels (with 
group structure GA a.ncl G B, respectively) ca.n be appliecl for the description 
of the internal degrees of freedom, then a completely algebraic treatment of 
the couplecl cha.nnel problern can be given. 

An Algebraic Scattering Theory (AST) of this kincl has been developed 
and applied in the last 13 years (Alhassid et. al. 1983, Wu et. al. 1987, Al­
ha.ssicl a.nd Iachello 1989), and it is presented in the previous contribution to 
the present volume (Ventura 1996). 

In cluster studies we a.re interested in clescribing the relative motion of 
two interacting particles (A a.ncl B). Their clistance remains finite either per-
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manently (bound states) or for a considerable time ( quasi-bound states). The 
energy spectrum of the system is discrete. 

When the interaction shows a dynamic symmetry, i.e. when the Hamil­

tonian of the system commutes with the elements of a Lie-algebra ( G R) the 

problern can be solved by purely group theoretical methods. One obtains a 

dosed formula for the energy eigenvalues, and other physical quantities can 

also be calculated in a simple way. 

If the partides do not have any irrtemal quantum numbers, we have a 

problern with a single degree of freedom, and the group structure of the 

model is G R- If the dusters have intemal quarrt um numbers ( e.g. due to 

their composite nature) we are faced with the problern of couplecl degrees 

of freedom. When group theoretical moclels ( with group structure GA ancl 

GB, respectively) can be applied for the description of the irrtemal clegrees 

of freedom, then we have an algebraic description in terms of a model with 

GA 0 G R 0 G B group structure. 

A group theoretical description of this kind, called Semimicroscopic Al­

gebraic Cluster Model (SACM) has been developecl and applied in the last 

five years (Cseh 1992, Cseh and Levai 1994). (For a review of the present 

situation see (Cseh et. al. 1996, Cseh 1996).) 

Similar approaches are applied successfully to two-body problems in other 

branches of physics as weil: two-atomic molecules (Iachello and Levine 1995, 

Frank and van Isacker 1994), and two-quark systems (Iachello et. al. 1991). 

In the case of the rotational-vibrational motion of a molecule there is no neecl 

to treat any irrtemal degrees of freedom, in the case of quark systems there 

are internal quantum numbers, but there is no composite internal structure. 
(A comparison of the algebraic models of the three fields is given in (Iachello 

et. al. 1995).) 

In the scattering problern the relevant irreducible representations are of 
infinite dimension due to the continuous spectrum. Therefore G R is non­

compact, e.g. 50(3, 1). On the other hand, for the description ofthe discrete 

spectrum in the duster problern one applies the finite dimensional irreducible 

representations of a compact group U(3) in nudear physic, ancl 0( 4) in molec­

ular and hadron specroscopy. 

Exact dynamic symmetries, as they a.re defined above, hold only for very 

special interactions, like e.g. Coulomb force a.nd harmonic oscillator interac­

tion, therefore, they arenot very helpful in describing realistic problems. The 

algebraic approach, however, which relies on a. symmetry is useful not only 

for systems with exa.ct clynamic symmetry, but also for systems with approx­

ima.te (broken) symmetries. The way of treating the symmetry breaking in 

the scattering theory and in the duster model is different, as discussed more 
in detail below. 

In what follows first brief summa.ries of the AST a.nd of the SACM are 

presented in Sections 2 and 3, respectively, which are needed for the a.nal­

ysis of the similarities and differences of their contents and methocls. This 
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comparison suggests some new type of applications of the AST. They are 
mentioned in Section 4. In Section 5. a possible alternative way of construct­
ing algebraic scattering theories is discussed. The basic concept forthat comes 
also from the algebraic treatment of the bound state problems. Finally some 
conclusions are drawn in Section 6. 

2 Algebraic Scattering Theory 

Here we review very briefly the concepts and formulae relevant for our com­
parison with the duster model. The notations of Alhassid and lachello (1989) 
are followed, and spinless particles are considered. 

The basic task of the scattering theory is the derivation of the cross sec­
tion. 

2.1 Single-channel scattering 

The differential cross section is obtained in terms of the scattering amplitude: 

d(J' 2 
dQ = if(k, D)l , (1) 

and for central interactions the scattering amplitude is given in a partial wave 
expanswn: 

1 00 

f(k,B) = 2ik 2)2l + 1)[St(k) -1]Pt(cosB). 
l=O 

(2) 

The Coulomb problern has an exact 50(3, 1) dynamic symmetry, i.e. the 
Hamiltonian can be written in terms of a Casimir invariant of this group: 

(3) 

where J.l is the reducecl mass, and C2 is the seconcl order Casimir operator 
with the eigenvalues: 

(C2)=w(w+2); (4) 

for the continuous unitary representations, labeled by the wave nnmber k. 
The St ( k) scattering matrix can be obtained in a purely algebraic way (Wu 
et. al. 1987): 

S _ T(l + 1 + iry) 
1 -:- r(t + 1- iry) ' (5) 

here r denotes Euler's Gamma-function, and 17 is the Sommerfeld parameter: 

J.LZ1Z2e 2 
1]= 1i2k (6) 
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For more general interactions the symmetry does not hold, and one is not 
able to derive simple formulas, like (5). If, however, the Coulombforce is still 
an important part of the interaction, like e.g. in case of heavy-ion reactions, 
one can try a similar description. Dealing with this situation of symmetry 
breaking in the scattering process in the AST the following generalisation is 
carried out. The fuctional form of the S matrix {5) is left unchanged, but the 
Sommerfeld parameter of the problern with an exact symmetry is substituted 
by a generic function v(l, k), called algebraic potential: 

St = F(l+1+iv(l,k)). 
r(l + 1- iv(l, k)) 

For the description of heavy-ion reactions one takes: 

v(l, k) = 'fJ + vs(l, k) , 

where the short-range part is: 

VR(k) + iv1(k) 
vs(l, k) = 1 + exp[(l-l0 (k))/..1(k)] 

(7) 

(8) 

(9) 

Here R refers to real, and I means imaginary.The algebraic potential paramet­
rizes the interaction in the similar way in the angular momentum (l) space, 
like the optical potential does in the the real ( r) space. 

2.2 Multichannel scattering 

The differential cross section from channel a to a' is given by: 

( dO") ka' ( 
1
2 

dQ = klfaa' k, fl) . 
a--..a' a 

(10) 

After the partial wave expansion: 

1 00 

faa 1 (k, B) = "[k k )1/2 2)21 + 1)[S~a'(k)- <Saa']Pc(cosB) . (11) 
2z a' a 

1=0 

The S matrix is still given in terms of the r functions: 

st = J{l/2r(l + 1 + iv) J{-1/2, 

F(l+1-iv) 
(12) 

but now the argument is a matrix. J{ is a diagonal matrix with the mo­
menta ka along its diagonal.The algebraic potential contains again two parts 
corresponding to the Coulomb and strong interactions: 

(13) 
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3 The Semimicroscopic Algebraic Cluster Model 

Here we review very brie:fly the concepts and formulae of the SACM relevant 
for our comparison with the Algebraic Scattering Theoryo We consider only 
the problern of two dusterso More detailed presentation of the model can be 
found in Refso (Cseh and Levai 1994, Cseh eto al. 1996, Cseh 1996)0 

In duster studies we are interested in determining the energy spectra and 
dynamic properties (eogo electromagnetic transition rates) of duster systemso 

3.1 Structureless clusters 

Closed shell nudei, like 4He or 160, may form this kind of dusters, which 
remain unchanged in the low-energy regiono The joint condusion of several 
experimental and theoretical studies is that some collective bands in 20Ne 
can be considered, to a good approximation, as a core-plus-alpha-partide 
configurationo 

When the internal degrees of freedom of the dusters do not play any 
role, we have to deal only with their relative motiono If the interduster force 
shows a dynamic symmetry then the eigenvalue problern of the energy has 
an analytic solutiono That is the case for the harmonic oscillator force, when 
the Hamiltonian is: 

(14) 

where ci}J is the linear Casimir operator of the U(3) group, ha.ving the 
physical meaning of the number operator of oscillator quanta, and 'Y gives 
the energy of the oscillator quantao Then the energy eigenvalue is: 

(15) 

The spectrum of the harmonic oscillator is too simple, for the description 
of atomic nudei we need more realistic interactiono For light nudei the har­
monic oscillator plus quadrupole-quadrupole intera.ction turned out to be a 
reasonable approxima.tion: 

H = HHo + xQ 0 Q 0 (16) 

Recalling that the (a.lgebraic) Q operator is rela.ted to the second order 
Casimir operator of SU(3), and to the angular momentum L by: 

(2) - 3 C su3 - 2Q o Q + 4 L o L , (17) 

and taking into account that L 0 L is the Casimir operator of 50(3), one can 
write: 

{18) 
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The eigenvalues of this Hamiltonian can still be obtained in a closed form by 

purely algebraic methods: 

1 3 
E = 1n + 2xn(n + 3) + 8xL(L + 1) , (19) 

due to the fact that the Hamiltonian is expressed in terms of the invariant 

operators of a subgroup-chain: 

U(3) :) SU(3) :) S0(3) (20) 

A more general algebraically solvable interaction emerges if we a.llow the 
parameters of H to be more general , but keep the same operators: 

(1) ~ (2) (2) 
H = ,cU3 + uCSU3 + ßCso3 + (' (21) 

E = 1n + 8n(n + 3) + ßL(L + 1) + f. (22) 

This formula can describe the energy spectrum of the duster bands in 20Ne 
reasonably weil, as it is shown in Fig. 1. (The parameters are in MeV: 

!=14.577, Ö=-0.464, ß=0.156, f=-64.00.) In the geometrical picture this 
interaction corresponds to a shifted anharmonic potential (Hess 1996) . 

Fig. 1. Experimental states of 20 Ne in comparison wit.h the model calculation in 

terms of an U (3) dynamic symmetry. The dashed lines indicate uncertain assign­

ments. The quantum numbers in the model spectrum are the numbers of oscillator 

quanta in the relative motion. 
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In the algebraic duster model the symmetry breaking is described by 
changing the functional form of the Hamiltonian, and expanding it in terms 
of the invariant operators of a chain of nested subgmups. This is a very special 
breaking of the exact symmetry that still allows purely algebraic solution of 
the eigenvalue problem. 

Finally one can embed the U(3) symmetry group into a larger group, e.g. 
U(4) (Iachello 1981), thus the complete chain of subgroups is: 

U ( 4) :::> U (3) :::> SU (3) :J S0(3) . (23) 

The advantage of the embedding is that then the whole spectrum of the prob­
lern can be characterised by a single irrep of U(4), which is called dynamical 
group of the system. 

More general symmetry breaking interactions can also be introduced. 
Then the Hamiltonian matrix is calculated by group theoretical means, and 
diagonalised numerically. 

This treatment of the symmetry breaking is usual in the algebraic struc­
ture models (see e.g. Iachello and Arima 1987). 

The model space of the SACM is constructed microscopically, i.e. it is free 
from the Pauli forbidden states as weil as from the spurious excitations of the 
center of mass. The exdusion of the forbidden states can be carried out by 
following different procedures (Cseh and Levai 1994, Katö 1988). A simple 
way is to make an intersection between the duster model basis {23) and the 
basis of the fully antisymmetric shell model {Elliott 1958). This procedure is 
justified by the equivalence of the Hamiltonians of the shell model and of the 
duster model. In the harmonic oscillator limit it was proved by Wildermuth 
and Kanellopoulos (Wildermuth and Kanellopoulos 1958), but is is valid also 
for more general interactions corresponding to the (21) (specially broken) 
dynamic symmetry (Cseh et. al. 1996). Furthermore, this Hamiltonian gives 
the rotational (i.e. quadrupole collective) bands of light nudei in terms of 
the spherical shell model (Elliott 1958). Thus we can say that for light nudei 
the U{3) {specially broken) dynamic symmetry provides us with the common 
intersection of the three basic structure models: the collective, the shell and 
the duster models. By this we mean that to the extent the U(3) quantum 
numbers are valid, the states have pure shell model and pure duster model 
configurations at the sa.me time, and in addition show well-defined quadrupole 
deformation. 

3.2 Coupled degrees of freedom 

In the SACM we describe the internal structure of the dusters by the Wigner­
Elliott shell model, having a usT ( 4) symmetry in the spin-isospin space, and 
a U{3) symmetry in the spatial part. Therefore, the model of a two-duster 
configuration has a group structure: 
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ug·(4) ® Uc,(3) ® ug;(4) ® Uc2 (3) ® UR(4) 

=:l ugr (4) ® Uc (3) ® UR(3) =:l U8(2) ® U(3) 

=:l ug (2) ® 0(3) =:l U(2) =:l 0(2) , (24) 

where C and R stand for duster and relative motion, respectively. A simple 

Hamiltonian corresponding to the (specially broken) dynamic symmetry of 

(24) is: 

(25) 

This gives a reasonable description of several light nudei. 

One of the main advantages of the algebraic method in duster studies 

(too) isthat complex spectra can be treated relatively easily. E.g. the ground­

state region of the 24 Mg nudeus and the very highly excited molecular reso­

nances observed in the 12C+12C reactions can be described in a unified way, 

i.e. as eigenstates of the same Hamiltonian in the same model space. 

Further unification in the description of the experimental data can be 

reached by applying the concept of the multichannel ( or multiconfigura­

tional) dynamic symmetry (Cseh 1994, Cseh 1996). This composite sym­

metry emerges due to the fact that a realistic interaction can be constructed 

which corresponds to a (specially broken) U(3) dynamic symmetry, and is 

invariant under the transformations between different duster configurations. 

Therefore, the (specially broken) U(3) dynamic symmetry provides us not 

only with the common intersection between the collective, shell and duster 

models, but also with the intersections of various duster configurations. This 

allows us to describe different duster configurations e.g. 24Mg+ 4 He in the 

low-energy region of 28Si, and 12C+160 in the high-energy region in a unified 

way, based on the same Hamiltonian. 
Detailed applications of the Semimicroscopic Algebraic Cluster 

Modelare presented in (Cseh et. al. 1992). 

4 Heavy-lon Scattering: Requirements and Possibilities 

In this section we consider the possibilities of combining the algebraic meth­

ods of the scattering theory and of the duster model. Our way of thinking is 

governed by the requirements of the reactions of light heavy-ions. 

4.1 Continuous spectrum 
in terms of the algebraic potential matrix 

In the description of the multichannel scattering the appearance of partide 

spin gives rise to further complications in the formalism. Then in addition 

to the orbital angular momentum l one also has the channel spin j, and 

only their vectorial sum is conserved: J = L + j. By applying the rotating 
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frame approximation (Alhassid and Iachello 1989), i.e. replacing l(l + 1) by 
J(J + 1) the unpolarised cross section becomes the same as that calculated 
for the spinless case. The approximation is good, when j « J for the values 
of J that are important in the scattering process. 

In the spin-dependent case the algebraic potential matrix corresponding to 
(9) becomes: Va'j',aj( J, k ). When the number of open channels is moderately 
large, the number of strength parameters is also large (Lepine-Szily et. al. 
1990). It can be decreased considerably by applying structure models for the 
description of the internal degrees of freedom of the colliding particles. Then 
the algebraic potential matrix can be expressed in terms of a smaller number 
of parameters (partly belonging to the structure model). For practical reasons 
so far only the target was considered to have internal degrees of freedom in the 
applications of the AST, while the projectile was taken to be structureless. 

The algebraic potentials in different channels are related to each other 
by the excitation operators of the internal structure, which in the algebraic 
structure models are usually taken as the generators of the internal algebra 
GA: Q>. = ß>.G>., where ß>.'s are deformation parameters. Then the algebraic 
potential matrix is: 

I 

( ) - ( l[2.A+ 1] 2
( )i'(j'.Aj) ( '''II II ') Va'j',aj J,k -E>.V>. J,k ~ - O OO ß>. aJ G>. aJ . 

(26) 
So far the Interacting Boson Model (IBM) of U(6) group structure (Iachello 

and Arima 1987), and the Interacting Boson Fermion Model of U(6) 0 U(m) 
group structure (Iachello and Van Isacker 1991) have been applied in practi­
cal calculations (Lichtenthäler and Gomes 1994). In particular, 160 scattering 
was considered on medium heavy targets, like Cu isotopes. 

A starightforward extension of the method towards lighter targets can be 
carried out by applying the GA = U8 T(4) ® U(3) .3hell model for the de­
scription of the internal structure of the targets, like in the SACM. (For light 
nuclei the shell model is also applicable relatively easily, and it is considered 
to be a better approximation than the simple IBM.) This possibility seems 
to be interesting in light of the fact that extensive experimental studies on 
reactions of light heavy-ions have been carried out. 

4.2 Discrete spectrum 

The energy-dependence of the cross sections of light heavy-ions shows ev­
idence not only for continuous spectra, but also for discrete ones. In other 
words resonances (i.e. quasibound states) are superimposed on the continuous 
background. 

In the traditional differential equation description these resonances are 
analysed by writing the S matrix as a sum of a slowly varying direct part 
and a Breit-Wigner term corresponding to the resonance (Sanders et. al. 
1981, Maas and Scheid 1992): 
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S = sDIR + sRES , (27) 
1/2 1/2 

SRES · [ '("' "')] rin rout = zexp z 'f'nuct +(]'in + (J' out + '+' ,. . I 
En- E- zr 2 

(28) 

The purely algebraic treatment of the resonances is available at present 
only for special interactions in one dimensional problems (Alhassid et. al. 
1985). Since the resonances are decaying states that do not conserve the flux, 
their algebraic description is given in terms of nonunitary representations of 
noncompact groups. This area of the representation theory is less cleveloped 
than that of the unitary representations of compact groups. Therefore, it is 
not clear if realistic interactions of three dimensional problems can be dealt 
with in this way in the near future. 

From the viewpoint of the practical needs, however, one could apply an 
analysis based on the sum of a direct plus resonant term of the S matrix, 
like in the traditional approach. The first part could be obtained from the 
coupled channel algebraic calculation. As for the second part, the situation is 
a bit more complicated. From the SACM one can obtain the spectrum of the 
(quasi) bound states, i.e. energies and spin-parities. One can also eietermirre 
duster spectroscopic factors from this model (Kato 1988, Cseh et. al. 1991). 
However, in order to get partial and total resonance widths one ha.s to apply 
geometrical methods, e.g. those of the R-matrix theory. Therefore, from the 
viewpoint of the methodology it is not a pure group theoretical treatment, 
rather it is a combination of algebraic and geometric tools. Nevertheless, from 
the pragmatical viewpoint of describing the heavy-ion resonances it seems 
to have some advantages. The algebraic description can account for more 
couplecl channels than the geometric one, as well as for a more complete 
discrete spectrum. Therefore, the combination of t.hese two methocls for the 
treatment of the direct plus resonant term of the heavy-ion reactions seems 
to be promising as weil. Especially if we take into account the fact, that no 
systematic description in terms of any method is available at present for the 
treatment of these two aspects of the heavy-ion scattering. 

This method of splitting the S matrix into a direct plus resonant term is 
similar in spirit to the work of Lichtenthäler and Gomes (1994), who carried 
out an analysis in terms of a direct term combined with a Regge pole. In that 
treatment the angular momentum is extended into a complex plane, instead 
of the energy, as mentioned here. The novel feature of the present proposal in 
this respect is the combination of the algebraic description of the scattering 
and discrete spectrum, which would enable us to take into account a !arge 
number of quasibound states. 

5 An Alternative Algebraic Approach to Scattering 

In this section we return to the continuous part of the spectrum. As a starting 
point, Iet us recall, how the symmetry breaking is treated in the AST on one 
hand siele, andin the SACM, on the other. 



Algebraic Scattering Theory and Light Heavy-Ion Reactions 283 

For the exact dynamic symmetry, when the Hamiltonian is expressed in 
terms of the Casimir invariant of a single Lie algebra, both the scattering 
matrix and the energy eigenvalues are obtained in a dosed form by purely 
group theoretical means. The more realistic cases, however, which correspond 
to the breaking of the symmetries, were handled in different ways. 

In the scattering theory the functional form of the S matrix was un­
changed (with respect to the exact symmetry), but. the arguments of the r 
functions were generalised. Instead of having the Sommerfeldparameter, cor­
responding to the exact symmetry, one introduces the more general algebraic 
potential. The algebraic potential does not have any relation to the subgroups 
of the original symmetry group. 

In the duster model, as well as in other algebraic models of bound states, 
the description of the symmetry breaking is different. The functional form 
of the Hamiltonian is changed. In particular, an expansion is carried out in 
terms of the generators of the dynamical group, like that of U( 4) of Section 
3. In simple cases it is a polynomial expansion, but in some models more 
complicated functions are also applied. In this expansion an important lim­
iting case emerges, when the generators of the dynamical group appear in 
such a special combination that they form the Casimir invariants of a chain 
of nested subgroups. This is the case of the specially broken dynamic sym­
metry, when we still have a dosed formula for the solution of the eigenvalue 
problem, obtained in a purely algebraic way. This kind of (specially broken) 
dynamic symmetry proved to be very important in structure studies in many 
respects. (One aspect is discussed in Section 3, that is the interrelations of 
different descriptions, i.e. algebraic and geometric, and connecting various 
models, associated with different physical pictures, like quadrupole collective 
model, shell model, duster model of different duster configurations.) 

An interesting question is whether or not this latter kind of symmetry 
breaking can be useful in scattering studies as well. This would result in 
an algebraic scattering model based on an S matrix having more complex 
functional form than that of Eq. (5). The Coulomb part, however, would 
remain the same, with the Sommerfeld parameter in the arguments of the 
r functions. A further question is whether the S matrix expressed in terms 
of the invariant operators plays an important role, or in other words, if the 
specially broken dynamic symmetry in the spirit of the structure models is 
reflected also in the S matrix. 

The treatment proposed here is somewhat similar to that applied in the 
description of barion scattering (Dover and Feshbach 1990). There the scat­
tering matrix was written as a linear combination of the quadratic and cubic 
Casimir operator of the flavour SU(3) group. The essential difference isthat 
the spatial degrees of freedom were not described in an algebraic way. Here 
we suggest the expansion of the S matrix in terms of the invariants ( or in gen­
eral in terms ofthe generators) ofthe symmetry groups (and their subgroups) 
describing both the internal and the spatial degrees of freedom. 
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In searching for the appropriate functional form of the S matrix the fol­
lowing things could guide us. i) For given algebraic potentials the S matrix 
should approximate that of the AST. ii) The phase shifts corresponding to 
various simple potentials can be derived in the geometric description, by 
applying approximation ( e.g. Born, semiclassical, eikonal) methods. Similar 
phase shifts should be obtained from the algebraic treatment when the S ma­
trix has the proper functional form. iii) The functional forms of the S-matrix, 
corresponding to exact dynamic symmetries other than S 0 ( 3, 1), may also 
give hints. iv) The locations of the poles of the 5'-matrix put strong con­
straints on the functional form, as well. 

As for the AST with other ( approximate) dynamic symmetries, the U ( 3, 1) 
case (Wu 1985) seems to be especially interesting. First, because it is the 
noncompact extension of the compact U( 4) group applied in the study of the 
discrete spectrum of the two-body problem. Seconcl, because it has the U(3) 
group as a subgroup. In the duster moclel the Pauli forbidden states could 
be excluded clue to the application ofthe U(3) basis, and the same proceclure 
might have importance in some reaction processes as weil. 

6 Conclusions 

The algebraic methods proved to be very useful in the clescription of systems 
of coupled degrees of freeclom. In studying the low-energy reactions of heavy­
ions we have typically this kincl ofproblems. In addition to accounting for the 
scattering process, one has to cleal also with the effects of the structures of the 
colliding nuclei. By algebraic methods we can describe both the continuous 
and the discrete spectrum of the two-(composite)-body systems. The two 
aspects are treated in the framework of the Algebraic Scattering Theory and 
of the (Semimicroscopic) Algebraic Cluster Model, respectively. 

In this contribution we have discussed the possibilities of combining the 
methods of these two models, from the viewpoint of the requirements of 
heavy-ion scattering. In particular, we have consiclered three issues. i) The 
application of the Wigner-Elliott shell model for the description of the inter­
nal structure of the colliding nuclei. In this way we can establish a relation 
between the elements of the multichannel algebraic potential matrix of light 
heavy-ions. ii) Description of the continuous and discrete spectrum in terms 
of an S matrix split into two parts corresponding to the direct and resonant 
contributions. They can be determined from the AST and from the SACM, 
respectively. iii) Construction of an alternative algebraic approach to the 
scattering problem. In this description the symmetry breaking correspond­
ing to the general interactions is not introduced via the generalisation of of 
the algebraic potential ( Sommerfeld parameter for the Coulomb problem). 
Instead, the functional form of the S matrix could be generalised. 
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Geometrical Relation of the SACM 
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Abstract. A geometrical mapping of the semimicroscopic algebraic duster model 
(SACM) is given. The geometrical variables are the relative radius vector, the 
quadrupole deformation parameters ß and 'Y and the orientation of the deformed 
nucleus in the molecular system. The position of the minimum of the nuclear molec­
ular potential is determined by the minimal number of 1r-bosons, describing the 
relative motion. This minimal number is determined by the implementation of the 
Pauli- principle. Applications to simple systems C6 0+a, 12C+a and 28 Si+28 Si) 
are presented. 

1 Introduction 

The Semimicroscopic Algebraic Cluster Model {SACM) {Cseh et al. 1992, 
Cseh et al. 1994, Cseh et al. 1996a) is very successful in describing in a unified 
way the low lying collective states and the high lying molecular resonances 
within a nucleus. The main physical inputs are: i) the transformation of a 
many body particle state to a two duster system, ii) describing the relative 
motionvia spin one 1r and scalar CT bosons (with the total number of bosons 
conserved) and iii) taking into account the Pauli principle by requiring, for 
example, a minimal number of 1r bosons. The second input is a method to 
introduce a cutoff in the model which restricts the number of 1r bosons be­
tween 0 and a maximal number. The last one can be understood looking at 
the following example: The 20 Ne nucleus can be considered as a 160 + a 
duster system. While the 20 Ne has in total 20 oscillation quanta, the sum of 
the oscillation quanta of 160 and a sum up to only 12. In order to take into 
account the Pauli principle, i.e., that antisymmetrization does not annihilate 
the state, one has to require that the relative motion contains at least the 
number of oscillation quanta needed to sum up to 20. Thus, in the example 
considered, the minimal number of relative quanta is 8. For a detailed de­
scription of the SACM see Ref. (Cseh et al. 1992, Cseh et al. 1994, Cseh et 
al. 1996a). Up to now, this modelwas applied to light systems only because 
the spin-orbit interaction can be neglected. 

One difficulty of an algebraic model is its interpretation in geometrical 
terms. This did led in the past to some activity in relating algebraic models 
to their geometrical Counterparts, as for example the IBA-1 model {lachello et 

* work supported by CONACyT, no. E120-550/95 
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al. 1987) with its geometrical one (Eisenberg et al. 1987). This mapping can 
be found in Ref. (Kirson et al. 1985, Leviatan et al. 1988) and is related very 
much with what we will present here. The question is if the SACM can also 
be related to a geometrical interpretation and how the condition of minimal 
number of 1r bosons is reflected. 

In this contribution we give a short review of the geometrical interpreta­
tion of the Semimicroscopic Algebraic Cluster Model. The detailed analysis 
is given elsewhere (Hess et al. 1996). We will show that the minimal number 
of 1r bosons is related to the position of the molecular potential minimum. 
The mapping will be applied to the systems 160 + o:, 12C + o: and 28 Si +28 Si. 
The simplest system is the first one which consists of two spherical clusters. 
The second one has a strongly oblate deformed and one spherical duster. The 
last example is a symmetric system with two oblate deformed clusters. The 
results of 28 Si + 28 Si are new and not pu blished in Ref. (Hess et al. 1996) . 
This system plays an important role in understanding the structure of 56 Ni 
(Cseh 1996b) which obtained a boost of interest after the publishing of new 
experimental data (Kraus et al. 1995). 

2 Geometrical Relation of the SACM 

2.1 Definition of the Potential and the Trial State 

The geometrical potential is defined as the expectation value of the Hamil­
tonian of the SACM with respect to some trial state which depends on pa­
rameters yet to be related to physical variables as the distance of the two 
clusters 

V(a) =< 0: I Hmic I 0: > (1) 

As a trial state we take a similar form as the coherent state proposed in 
Ref. (Kirson et al. 1985, Leviatan et al. 1988) with the difference to exclude 
all states which have a number of 1r bosons less than the minimal one (n0 ): 

In the compact form of the second line the 1 value has to be set equal to 
1 after the differentiation has been carried out. The normalization factor can 
be directly calculated and gives (Hess et al. 1996) 

.Nir,~o = N!no!(o:. ato [1 + (o:. o:)]N 

(o:·o:) 
*2Fl(-n0 ,-N;1; 1 ( )) + 0:·0: 

(3) 
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For the creation and a.nnihilation operators we use a co- and contravariant 
notation, i.e., that the a.nnihilation operator is given by ?Tm and the creation 
operator by 1r!n. The co- and contravariant component of, e.g., the annihila­
tion operator are related via ?Tm= (-1) 1-m7Lm. 

The expectation value of any operator 0, which is a function of the 1r and 
cr bosons, is ea.sily calculated via 

< o: I o I o: >= 
N2 [ N! ] 2 dno dno 

N,no (N + no)! dl~o d!~o 
* < 0 I [cr + /1(0:. 7r)]N+noO[crt + /2(o:. ?Tt)t+no I 0 > (4) 

We give here the result for the most important building blocks of any 
interaction which can appear in the Hamiltonian of the SACM: 

< 0: I [[?Tt X ?Tt][S,] X [?T X 7r][S2)]~') I 0: > 
= (N + no)(N + n0 - 1) ( (o: X o:][S,] X (o: X o:][S2l]~')N~no 

(N1)2 dno dno 
* (N +. )1 d no d no (/1/2)2 [1 + /1/2(0:. o:)]N+no-2 (5) 

no · /1 /2 

The boson vacuum I 0 > has an internal structure related to the two 
dusters. There is the total number of oscillation quanta. ( nck) in duster 
number k, the SU(3) irrep of each duster denotecl by (.>..ck, pck), the total 
( .>.., p), the angular momentum Lc, its projection Mc and the other quantum 
numbers related to multiplicity indices. 

I 0 >--tl nc,(.A.c,,pc,),nc2 (.>..c2 ,f..lc2 )Pc(.A.c,pc)~cLc,Mc = Lc > . (6) 

This is important for determining the expectation value of the a.lgebraic 
qua.drupole operator of each duster Q~ ( k) ( equal to the Elliott quadrupole 
operator (Elliott 1958)) with respect to the trial state. We use the relation 
given in Ref. (Castaiios 1988): 

< Q':r,(k) >= {f(nck + ~(Ak -1))a2m(k) . (7) 

where a 2m ( k) is the quadrupoledeformationvariable in the molecular system 
(Eisenberg et al. 1987). 
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2.2 Relation of am. to rm. 

Up to now, the potential depends on some parameters O:m (m = -1, 0, +1) 
which still have to be related to the relative distance vector rm written here 
in spherical components. It is clone by defining it as the expectation value of 
the microscopic distance operator rm 

(8) 

In order to take into account the cutoff, introduced by the use of the (]" 
bosons, the microscopic distance operator has to be modified in such a way 
that in removing the cutoff it tends to the usual definition. It also should take 
into account that for N = 0 the expectation value is equal to the average 
position of a state with n 0 oscillation quanta. This is given by (Hess et al. 
1996) 

(9) 

where r 0 is the absolute value of a vector r'o,m and is one of the main results 
of the geometrical mapping. With this the modified microscopic distance 
operator is given by (Hess et al. 1996) 

fh (7rl(J"+(J"t7rm) 
rm=y~)<OI(J"t(J"IO> +ro,m 

(10) 

calculating its expectation value with respect to the trial state and set it 
equal to rm we get, for the large N limit, a relation of O:m with ( 1'm - r 0 ), 

namely 

(11) 

Note that O:m ,....., )N. Due to this, all N -dependence is removed from the 

mapping of any operator, e.g., the number operator for the 1r-bosons, in the 
large N limi t, is mapped to N ( a · a) = r;;~ ( r- r 0 ) 2 . N ow we have all elements 
together in order to get the potential out of the SACM. 

3 Applications 

The first system we discuss is 160 + o: and consists of two spherical clusters. 
The only relevant degree c.f freedom is the radial distance of both clusters. 
As an Hamiltonian of the SACM we used 

(12) 
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with f = -63.998MeV, 'Y = fiw = 3.185MeV, 'rJ = -0.4641MeV and 
ß = 0.1562MeV. The model parameters were obtained using the new, stan­
dardized Hamiltonianofthe SACM (Cseh et al.1996). There, the 'Y parameter 
is related to the fiw of the united system. 

Proceding in the calculation of the expectation value we obtain for the 
potential 

V(r) = -63.998 + 1.9078(r- r 0 ) 2 - 0.0118(r- r 0 ) 4 . (13) 

This is a very simple potential and is dominated by the structure of a har­
monic oscillator. Assuming as a kinetic energy the usual one (- ~: .1, with J.L 

as the reduced mass) we can estimate the expected position of the first ex­
cited 1- state. Of course, this should be seen as a rough estimation in order 
to see if the potential has the expected properties. As a result we get for the 
energy of the first excited 1- state the value of about 7 MeV. This has to be 
compared with the first observed one, which isatabout 5.8MeV (Lederer 
et al. 1978). We can also compare the deduced average distance (1·0 ) of the 
two dusters with an estimation where we suppose a sharp surface of the two 
dusters. We obtain for r 0 the value ~ 5/m ( the minimal number of 1r bosons 
is 8) compared to 4.9/m ofthe estimation. We see that all values fall into the 
right ballpark and thus gives us the confidence that the potential obtained 
makes sense. 

The next sytem we discuss is 12C + a which consists of one deformed and 
one spherical duster, which is the next complicated case. The Hamiltonian 
is given by (Hess et al. 1996) 

H = -29.416 + 13.921n~r- 0.5738n~r(n~r + 3) - 0.0896C2(.A, J.L) 
+0.5422K2 + 0.2038L2 . (14) 

The mapped potential will now depends, additionally to r, on the deformation 
ofthe duster and the orientation ofits symmetry axis to the molecular z-axis. 
The latter is defined as being along the radial distance vector. The potential 
has the form 

V(r) = -41.925 + (2.0467 + 0.2329ßc(3cos2B2c- 1))(r- r 0 ) 2 

-0.01868(r- r 0 ) 4 . (15) 

Taking into account that the 12C duster is oblate and has a large deformation 
ß = -0.66 (Jones et al. 1986), the energetically lowest position is at B2c = 0°, 
which agrees weil with microscopic calculations (Lea.nder et al. 1975). Also the 
estimated position of the first excited 1- state, expanding in r for B2c = 0° 
and doing the estimation in the same way as clone in the last example, is 
about 7 MeV which is practically the same as the observed one (Lederer et 
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al. 1978). The value of 1'0 is approximately 3.5/m (no = 4) compared to the 
value 5.7/m, obtained assuming a sharp surface of the dusters. Again the 
properties of the potential fall in the right ballpark. 

Our last example is 28 Si + 28 Si -+56 Ni. It recently attracted more atten­
tion (Cseh 1996b) due to new experimental data (Kraus et al. 1995) which 
question the interpretation of 28 as a shell dosure. The system consists of two 
oblate deformed dusters and is symmetric. As collective variables we have 
the internudear distance coordinate rm, the orientation of the symmetry axis 
of each duster with respect to the molecular z-axis and an additional angle 
describing the rotation of the symmetry axis of one duster out of the plane 
defined by the symmetry axis of the other duster and the molecular z-axis. 
Further there are the deformationvariables of each duster. 

As an Hamiltonian we use (Cseh 1996b) 

H = -334.98 + 10.054n.-- 0.00609C2,c(.Xc, J.Lc)- 0.0312C2(.X, J.L) 

+(0.672- 0.0153n.-)L2, (16) 

where (.Xc,J.Lc) is the SU(3) duster irrep (we take the maximal coupling 
which turns out to be the (0, 24)) and (.X, J.L) = (20, 8) is the lowest SU(3) 
irrep of 56 Ni ( Cseh 1996b). 

Calculating its expectation value with respect to the trial state and ex­
pressing the variables am in terms of rm and ro,m we obtain a potential 
whose minimum in the angular variables is such that the two dusters face 
each other with their flat side, i.e., their symmetry axis are parallel to each 
other and also parallel to the molecular z-axis. Details of the calculation and 
the form of the potential will be given elsewhere (Levai et al. 1996). In de­
riving the potential we had also to symmetrize the system, which according 
to Ref. (Hess et al. 1996) modifies the structure near the position r0 of the 
nudear molecular potential minimum. Noting that the minimal number of 1r 

bosons is 36 (Cseh 1996b) the r0 is 12.2/m and the potential has the form 

1 - e-0.2422(r-ro) 2 

V= -361.38- 1.375(r- ro) 2 
0 2422( )2 1 + e- . r-ro 

-0.0009123(r- r 0 ) 4 (17) 

where we took hw = 10.054MeV, hc = 197.33MeVfm and for the nudear 
mass mc2 = 938M e V. 

As can be observed, there is a drastic change of structure for the quadratic 
term in ( r- r 0 ). This is due to the symmetrization and this contribution van­
ishes at r = r0 while for r very different from r0 it approaches the usual form 
of the potential as we have encountered it before. The general form of the 
potential is very flat near r = r0 • Therefore, it is hard to make an estimation 
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of the position of the first excited 1- state as in the other examples. We 
can, though, estimate the touching distance, under the assumption that the 
mass distribution of each duster is box like and their surface is weil defined. 
We obtain for a deformation of ß ~ 0.2 (Kraus et al. 1995) and the orienta­
tion given above the value 8/m and for a spherica.l duster 9.6/m. This has 
to compared with the 12.2/m obtained by us. The orientation obtained by 
the geometrical relation as the lowest in energy agrees very weil with micro­
scopic estimations. Calculations for this system within the SACM are still 
preliminary and the details will be published elsewhere (Levai et al. 1996). 

4 Conclusions 

In this contribution we gave a short review of the geometrical relation of 
the SACM. We applied it to three systems. The first one e60 + a) consists 
of two spherical dusters, the next one e2c + a) of one deformed and one 
spherical duster and the last one (28 Si +28 Si) is symmetric and has two 
oblate deformed dusters. In ail systems the potential obtained are reasonable 
and reflect the microscopic properties quite weil, like which orientation is 
lowest in energy. We could also reproduce qualitatively the position of the 
minimum of the nudear molecular potential and of the first excited 1- state. 
An important result was that the position r 0 of the minimum is related to the 
minimal number of 1r bosons required in order to satisfy the Pauli principle. 

Detailed derivations of the formulas, given in the text, are available in 
Ref. (Hess et al. 1996) . 
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Abstract. Potentials providing the same complex phase shifts as a given com­
plex potential but with a shallower real part are constructed with Supersymmetrie 
transformations. Successive pairs of transformations eliminate normalizable solu­
tions corresponding to complex eigenvalues of the Schrödinger equation with the 
full complex potential. With respect to real potentials, a new feature is the oc­
currence of normalizable solutions with complex energies presenting a positive real 
part. Removing such solutions provides a way of suppressing narrow resonances but 
may lead to complicated equivalent potentials with little physical interest. We dis­
cuss the singula,rity of the transformed potential and its relation with the Levinson 
theorem, the transformation of the Jost function, and the link with the Marchenko 
approach. The technique is tested with the solvable Pöschl-Teller potential. As phys­
ical applications, deep optical potentials for the a + 16 0 and 16 0 + 16 0 scatterings 
are transformed into l-dependent phase-equivalent shallow optical potentials. 

1 Introduction 

The optical model (Feshbach 1992; Hodgson 1978) is widely used to analyze 
the cross sections obta.ined in heavy-ion scattering. Nucleus-nucleus poten­
tials usually involve a negative imaginary part. However the data analysis is 
plagued by discrete ambiguities. The deep or shallow nature of optical poten­
tials is a long-standing problern in nuclear physics. In several cases, different 
complex potentials offer a similar quality of fit for a given collision. Weil 
known examples where very different potentials fit the data in a satisfactory 
way are provided by the a + a (Ali and Bodmer 1966; Buck et al. 1977), 
12C + 12C (Reilly et al. 1973; Bromley 1978), and 160 + 160 (Siemssen et 
al. 1967; Chatwin et al. 1970; Kondö et al. 1989) elastic collisions. 

In the seventies, theoretical arguments appeared providing a justification 
for deep potentials (Neudatchin et al. 1971; Buck et al. 1977). The lowest 
bound states of the real part of such potentials are interpreted in terms of 
approximate forbidden states, i.e. of states in the relative motion of the col­
liding nuclei which are not allowed by the Pauli principle (Wildermuth and 
Tang 1977). These bound states are therefore considered as non-physical. 
The other bound states can sometimes be interpreted as approximate phys­
ical states of the fused nucleus. Microscopic models provide a prescription 
about the number of forbidden states, which allows a selection of the most 
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convenient potential depthso With this prescription, accurate phenomenolog­
ical potentials have been found for example for the o: + o: (Buck et al. 1977), 
o: + 160 (Michel et al. 1983), o: + 4°Ca (Michel and Vanderpoorten 1979), 
and 160 + 160 (Kondo et al. 1989) scatteringso 

For real potentials, the apparent difference between deep and shallow 
potentials can be exactly eliminated by constructing phase-equivalent poten­
tials (Baye 1987a)o Indeed, supersymmetric transformations (Sukumar 1985; 
Levai 1994), w hich are based on a factorization of the Rarnil tonian, allow to 
construct potentials which provide exactly the same phase shifts as a given 
potential (Baye 1987a, 1987b, 1993, 1994; Ancara.ni and Baye 1992; Baye 
and Sparenberg 1994) 0 Deep potentials can be tra.nsformed into equivalent 
shallow potentials by removing their unphysical bound stateso The resulting 
potentials display a singularity at the origin which is una.voidable a.ccording 
to the generalized Levinson theorem (Swan 1963): the Variation of the number 
of bound states is compensated by a variation of the singularity imposed by 
the fixed difference of phase shifts at zero and infinite energieso The resulting 
shallow potential usually depends on the angular momentumo An application 
(Ba.ye 1987a) to the o: + o: potential of Buck et al. (1977) has shown that it 
is approximately equiva.lent to the potential of Ali and Bodmer (1966) 0 More 
general modifications of a potential are possible, without changing the phase 
shiftso The bound spectrum can be modified in an a.rbitrary way (Baye 1993, 
1994)0 The technique is not restricted to removing at each step the nodeless 
ground state as it was a.ssumed in early works (Baye 1987a, 1987b)o In fact, 
all potentials which are phase equivalent to a given real potential can be 
constructed (Baye and Sparenberg 1994) 0 

However, realistic heavy-ion collisions are not restricted to a single chan­
nel. In order to take a.bsorption towards open channels into account, com­
plex optical potentials are usedo Recently, it was shown that SUpersymmetrie 
transformations can also be applied to the construction of potentials which 
are phase equivalent to a given complex potential (Baye et al. 1996; Sparen­
berg and Baye 1996) 0 In this case, the real part of the potential can be made 
shallower by removing normalizable solutions of the Schrödinger equation 
with the complex potential. These complex normalizable solutions do not 
have a direct physical mea.ning in the case of a complex potential. They do 
not imply the existence of any physical bound systemo They differ from usual 
resonances whose wave functions are not square integrableo The method re­
mains very similar to the phase-equivalence problem for real potent.ia.lso The 
main difficult.y is here determining normalizable solutions of complex poten­
tialso 

In Secto 2, the supersymmetric-transformation technique is presented in 
the complex caseo In Secto 3, the singularity of the transformed potential 
and its relation with the Levinson theorem, the transformation of the Jost 
function, and the link with the Marchenko equation are discussedo In Secto 4, 
the method is applied to a complex Pöschl-Teller potential and to the o: + 160 
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and 160 + 16 0 elastic scatterings. Finally, concluding remarks and prospects 
are presented in Sect. 5. 

2 Derivation of Phase-Equivalent Potentials 

For h2 /2JL = 1 (where fJ is the reduced mass of the system), the radial 
Schrödinger equation at orbital momentum l, for any complex energy E = k 2 , 

reads 

(1) 

where the radial function 1j;1 ( k, r) vanishes at the origin. The complex effective 
potential 

(2) 

where W1 is negative, behaves asymptotically as 

l() l(l+1) 2T]k 
V r -+ 2 + -, 

r-too r r 
(3) 

where T} = Z1 Z 2 e2 /2k is the Sommerfeldparameter. This potential is bounded 
except possibly near the origin. Near r = 0, it behaves as 

VI ( ) 7) ( v1 + 1) 
r -+ 2 ' 

r-+0 r 
(4) 

where v1 is a positive integer. For regular potentials, v1 is equal to l. In 
the following, we consider singular potentials with v1 =P l. The superscript l 
appearing in the different notations refers to the orbital momentum of the 
partial wave, which is not affected by the supersymmetric transformations. 
For simplicity, it is dropped till the end of this section. 

Let 1/Jo(ko, r) be a normalizable solution at the complex energy E0 = k6, 
with Im ko > 0 and J0

00 1/J6(ko, r) dr = 1. The hamiltonian Ho in (1), with 
Vo(r) = V(r), can be factorized as 

Ho= At A0 + Eo (5) 

with 

A± = ±~ + 1/J~(ko, r). 
0 dr 1/Jo(ko, r) 

(6) 

This factorization is easily verified by a direct calculation in which the fact 
that 1/Jo(ko, r) satisfies the Schrödinger equation (1) is employed. We arenot 
using in (6) the traditional notation involving the derivative of a logarithm 
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(Sukumar 1985) in order to avoid ambiguity problems with logarithms of 

eomplex numbers. In a eomplex ease, the problern of the zeros of 1/Jo(k0 , r) 
in the denominator of the last term in (6) should not oeeur beeause eomplex 

solutions are not expeeted in general to exhibit exaet zeros. 
The supersymmetrie partner of Ho is defined as (Sukumar 1985) 

_ _ + _ d (1/Ji1(ko, r)) 
H1- A0 A0 + Eo- Ho- 2 dr 1/Jo(ko, r) . (7) 

If 1/Jo(k, r) is an eigenfunetion of Ho at energy E (whieh ean be real pos­
itive for seattering sta.tes but also eomplex for normalizable solutions), an 

eigenfunetion of H 1 at the same energy is given by 

(8) 

for E =F E0 . The normalization faetor is ehosen so that J0= 1/Ji(k, 1') dr = 1 if 

f0
00 1/JÖ ( k, r) dr = 1. The function 1/;1( k, r) ean also be written as 

(9) 

by using simple properties of the Wronskian of 1/Jo ( k0 , r) and 1/Jo ( k, r) (Baye 
1987b; Anearani and Baye 1992). As shown by (8), the funetion A01/Jo(k0 ,r) 
vanishes and energy E0 does not eorrespond any more to a normalizable 

solution for H1. 
In a seeond step, H 1 is faetorized as (Baye 1987a, 1987b) 

(10) 

with 

A± _ d 1/Jb(ko, r) 1/JÖ(ko, r) 
1 - ± dr- 1/Jo(ko, r) + J; 1/JÖ(ko, t)dt · 

(11) 

The supersymmetrie partner of H 1 is therefore 

H2 = A1 A{ + Eo (12) 

whieh eorresponds to a potential 

(13) 

Although aeeidental zeros eannot be excluded, the denominator should not 
vanish in genera.l since the integral J; 1/JÖ ( ko, t) dt is a complex function. When 
the modulus of the denominator is very small at some r value, the new 
potential V2 ( r) will present a pea.k. Such a case does not occur for a real 
potential where J; 1/JÖ(ko, t) dt is an increasing function of r. In (13), the 
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phase choice for the complex function 'l/Jo(k0 , r) does obviously not play any 
role. 

Bounded eigensolutions ofhamiltonian H2 at a discrete normalizable-state 
energy Ei =J E 0 or at a positive energy read 

'l/J2(k, r) = (E- Eo)- 1/ 2 A['l/Jl(k, r). (14) 

lntroducing (9) in (14) leads to an expression of 'ljJ 2(k, r) as a function of the 
eigensolutions of Ho, 

J; 1/Jo(ko, t)'l/Jo(k, t) dt 
'!jJ2 (k, r) = 1/Jo(k, r)- 1/Jo(ko, r) rr ,,, 2 (k t)dt (15) 

Jo 'Yo o, 

Here also J0= 1/JHk, r) dr = 1 when f0= '!fJ6(k, r) d1, = 1. Since 1/Jo(ko, r) is 
normalizable, the asymptotic behaviour of 'l/J2 ( k, r) in (15) is identical to the 
asymptotic behaviour of 1/Jo ( k, r). Therefore, the potential V2 ( r), w hich does 
not have a normalizable solution at E0 but has otherwise the same other 
eigenenergies as Vo ( r), is phase equivalent to Vo ( r). Equations ( 5) to ( 15) are 
simple generalizations of the equations derived in the real case (Baye 1987a, 
1987b). Notice that complex conjugation does not occur in (13) ancl (15). 

Relation (13) can be iterated. Starting from a solution 'ljJ2 (k1 , r) of H 2 at 
an energy E 1 = kr where the initial potential V0 has another normalizable 
solution, one can transform v2 into v4, and so Oll. The final potential V2n 
is obtained when n normalizable solutions are removed. As in the real case 
(Ancarani and Baye 1992), compact formulas based on determinants involv­
ing normalizable solutions of the initialpotential can be derived. Moreover, 
adding such solutions, modifying their energy, and any combination of such 
modifications, can be obtained by generalizing the contents of Baye (1987b, 
1993, 1994) and Baye and Sparenberg (1994). 

3 Interpretation 

3.1 Singularity of the Potential and the Levinson Theorem 

Using (9) and a similar equation equivalent to (14) allows us to compare 
the behaviours of solutions near the origin. Since ~JS(k, r) behaves like rv~+l, 
leading terms of series expansions show that 1/Ji(k, r) behaves like r1/~+ 2 and 
1/J~(k, r) behaves like 1"'6+3 . Consistently, (13) shows that the singularity pa­
rameter vb of potential V:/ ( r) increases by two unit.s with respect t.o VJ ( r), 
Le. 

l l 2 v2 = va + . (16) 

The strength v1(v1 + 1) of the potential singularity at the origin increases at 
each state removaL Let us explain how successive potentials can provide the 
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same phase shifts in spite of different numbers of normalizable states with a 
generalized Levinson theorem. 

The Levinson theorem (Newton 1982, Chap. 12) establishes a link between 
the number n1 of bound states and the phase shift .51 ( k) of a real regular 
potential decreasing faster than r- 2 for r tending towards infinit.y. It was 
extended to the Coulomb case (Iwinski et al. 1985) and generalized (Swan 
1963) to potentials wit.h a singularity at the origin. Taking into account all 
these generalizations, a theorem valid for all complex potentials containing 
a Coulomb term and a r- 2 singularity at the origin given by ( 4) can be 
conjectured (Sparenberg and Baye 1996), 

IS1(0)I = IS1(oo)l = 1, 
argS1(0) = (2n1 + v1 -l)1r, 
arg S1 (oo) = 0, 

(17) 

where n1 is the number of normalizable solutions and S1 does not include 
the Coulomb scattering matrix. The theorem may have to be modified in the 
s wave when a square-integrable state exists at zero energy (Newton 1982), 
but this case does not occur when the potential contains a Coulomb term 
(Iwinski et al. 1985). 

The phase shifts before and after the supersymmetric transformation 
share the same Levinson theorem in spite of different n1 values, because 
of a common sum 2n1 + v1• As in the real case, the singularity change is 
unavoidable when phase equivalence is imposed. 

3.2 Modification of the Jost function 

For any complex k, the generalized Jost solutions f 1 (±k, r) are defined as the 
solutions of Eq. ( 1) at energy k 2 , with the asymptotic behaviours 

l (±k, r) --+ exp (i~v1 1r ± ikr =f iry ln(=F2ikr)) 
r-+oo 

(18) 

(see Sparenberg and Baye 1996 for details). The Jost function F 1(k) is de­
duced from the limit 

i(k,r) --+ (2v1 -1)!!F1(k)(-h)-v'. (19) 
r-+0 

The ko value of a normalizable state satisfies F1(ko) 0. The S matrix 
appearing in (17) is defined for any complex k by 

where Sc is the Coulomb scattering matrix (Newton 1982, Sect. 4.6.1). 
The J ost function F~ ( k) of the transformed potential Vi ( r) can be de­

duced from transformations of Jost solutions of "llJ(r). Let us start from a 
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Jost solution fÖ(k, r) of Ho where Vo is assumed tobe regular. Equation (8) 
remains valid and provides the transformed Jost solution 

(21) 

which is proportional but not identical to the Jost solution of H 1, because it 
does not satisfy (18). The exact Jost solution fHk, r) of H2 is then obtained 
from jf(k,r) with a similar equation. It can be expanded, using (19) for 
fÖ(k, r), as 

f~(k,r) -+ (k2 - k~r 1 (2v1 +3)!!F6(k)(-krv'r-v'- 2 . (22) 
r-+0 

Hence, comparing (22) with the definition (19) provides the relation 

l k2 I 
F2(k) = k2- k5 Fo(k). (23) 

This equation shows that (i) the zero of the Jost function at k0 is removed, 
(ii) a pole appears in the Jost function at -ko, and (iii) the S matrix defined 
in (20) remains unchanged after the transformation pair, i.e. 

S~(k) = S~(k). (24) 

For the singular transformed potential Vi ( r), the zeros of the Jost function 
and the poles of the S matrix are not identical. Removing a normalizable 
solution without modifying the S matrix implies replacing a zero of the Jost 
function by a pole. 

3.3 Marchenko Equation 

Equation (13) has the form 

with 

K(r, t) = 1fo(k~ r),Po(ko, t) . 
1- fr 1f5(ko, s)ds 

The kernel K(r, t) satisfies the Marchenko equation 

K(r, t) + il(r, t) + 100 
K(r, s).Q(s, t)ds = 0 

involving the separable kernel 

.Q(r, t) = -1fo(ko, r)1fo(ko, t) 

(25) 

(26) 

(27) 

(28) 
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in agreement with e.g. Eqs. (V.2.4) in Chadan and Sabatier (1977), when the 
scattering matrixis not modified. From (21), one can show that Jost solutions 
transform as physical wave functions according to ( 15), i.e. 

h(k, r) = fo(k, r) + 100 K(r, t)fo(k, t)dt, (29) 

where we use the orthogonality of solutions at different energies. 

4 Applications 

4.1 Complex Pöschl-Teller Potential 

The Pöschl-Teller potential is defined as 

() - s(s+1) 
V r -- 2 , 

cosh r 
(30) 

where s characterizes the complex strength of the potential. Analytic solu­
tions are available but only for l = 0. The energies of the l = 0 normalizable 
states are given, as in the real case (Flügge 1971), by 

(31) 

where the positive integer n satisfies 

2n + 1 <Res. (32) 

Normalizable states correspond to zeros in Im k > 0 of the Jost function 

(k) _ 2ikJ7rr(1- ik) 
F - ( 1 . ) (1 · )' r 2(2+s-1k) r 2(1-s-1k) 

(33) 

For Re s > -1/2, the poles of the second r function in the denominator of 
(33) lie in Re k < 0 and provide normalizable states in Im k > 0 if (32) holds. 

Let us choose s = 5.1 + 2i which corresponds to s(s + 1) = 27.11 + 22.4i. 
The zeros of the Jost function are represented by full dots in Fig. 1 for the 
full complex potential and by open dots on the imaginary axis for its real 
part. For a complex potential, they arenot any more symmetric with respect 
to this imaginary axis. Three normalizable states labelled Nl, N2 and N3 
appear in Re k < 0. While the energies ofNl and N2 have negative real parts, 
the energy E3 of N3 is 3.99- 0.4i. The scattering matrix of this potential is 
represented by thick lines in Fig. 2 (before and after the transformation). The 
Levinson theorem (17) leads to different J(O) values for the complex potential 
(three normalizablestates) and for its real part (two bound states). The phase 
J and modulus JSJ respectively present a fast decrease and a minimum near 
Re E3. 
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Fig. 1. Zeros of the Jost function of the complex Pöschl-Teller potential with 
s = 5.1 + 2i (full dots) and of its real part (open dots). Normalizable states are 
denoted as Nl, N2 and N3. Trajectories are calculated for a constant real part 
( -27.11) and a variable imaginary part of the Pöschl-Teller potential. 
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Fig. 2. Scattering matrix ISI exp{2io) of the complex Pöschl-Teller potential (thick 
lines). The phase shift obtained with the real part U is represented as a thin line. 

The potentials resulting from successive transformations (13) are dis­
played in Fig. 3. The transformed real parts U2 and U4 obtained after re­
moving the normalizable states at energies E1 and E2 corresponding to NI 
and N2 in Fig. 1, become progressively shallower (l.h.s. of Fig. 3). Each po­
tential U2n exhibits a singularity 2n(2n + 1) f r 2 . The imaginary parts are 
less modified. Their depth is progressively reduced and their range increases. 
However, removing the solution N3 at energy E3 leads to a potential which 
presents strong oscillations (r.h.s. of Fig. 3). These oscillations appear be­
cause the third normalizable solution 'l/Jo(k3, r) tends to exp(ik3r) which has 
a large spatial extension with slowly damped oscillations. This situation oc­
curs for k values such that 

0 < Im k « I Re k 1. (34) 
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Fig. 3. Potentials U2n + iW2n abtairred by successively removing the "lowest" nor­
malizable states from the Pöschl-Teller potential (thick lines). 

Such solutions lead to unpleasant potentials and should not be removed in 
physical applications (Baye et al. 1996; Sparenberg and Baye 1996). 

More detailed information about analytical transformations of the Pöschl­
Teller potential are given in another contribution to this conference (Levai et 
al. 1996). 

4.2 a + 160 Scattering 

A unique deep potential valid over a broad energy range is available for the 
a + 160 elastic scattering (Michel et al. 1983). Its real part provieles an 
approximate description of the 20 Ne spectrum. This implies however that its 
l ( 8 - l) lowest bouncl states for the even partial waves l = 0 to 6 ancl its l (9 -l) lowest bouncl states for the odcl partial waves l = 1 to 7 be considered 
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as non physical. Higher bound states and low-energy resonances qua.litatively 
approximate the observed 20 Ne spectrum. Removing the unphysical bound 
states should Iead to a shallow potential which has the same physical content 
as the real part of the potential of Michel et al. (1983). Notice that. this real 
part slightly depends on energy. We shall consider the potential at the lowest 
energy for which it has been fitted (32.2 MeV). 

- 2G - ~------------+ 
C> 2 4 o 2 4 e 

... (1" .......... ) .... ('f ........... ) 

Fig.4. Shallow effective potentials U~tr +iW1 for l = 0 to 14, obtained by removing 
all non-physical normalizable states from the a + 16 0 optical potential of Michel 
et al. (1983) (thick lines). 

By successive transformations (13), we remove in each partial wave a 
number of normalizable solutions equal to the number of unphysical bound 
states (Baye et al. 1996). The resulting complex effective potentials are shown 
in Fig. 4. They depend on l but provide exactly the same cross sections as the 
deep potential. In spite of the fact that the original potential does not depend 
on parity, the minima of the final effective potentia.ls are clearly different for 
even and odd partial waves. This can be understood as follows. The effective 
real parts u~ff(r) which include the centrifugal term present a singularity of 
the form n(n + 1)/r2 with n = 8 for even waves and n = 9 for odd waves 
(l :S 9). The stronger singularity for odd waves pushes the minimum towards 
!arger r values. This odd-even effect is consistent with the fact that positive 
and negative-parity states belong to different bands in the 20Ne spectrum. 

The imaginary parts W 1 ( r) are also l dependent. Their range is increased 
by the transformation. Here also, an odd-even effect occurs. The range of W 1 

for the odd waves is slightly !arger than for the comparable even waves. 
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Fig. 5. Poles of the l = 18 S matrix for the deep potential of Kondö et al. (1989) 
at 25 MeV in the complex k and E planes (full dots). The poles of normalizable 
states (N) or resonances (R) are numbered by increasing real parts of their energy. 
Empty dots represent the poles of the real part of the effective potential. 
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4.3 160 + 160 Scattering 

For the 160 + 160 Scattering, deep and shallow optical potentials provide 
similar fits of excitation functions over the 10 to 35 MeV energy rangein the 
center-of-mass frame. A shallow potential, with Woods-Saxon form factors 
for both the real and imaginary parts, could be deduced (Siemssen et al. 
1967; Chatwin et al. 1970). The real part of the potential of Kondö et al. 
(1989), which fits elastic scattering data in the same energy range, is deep 
with non-physical bound states simulating the expected ~ (24 - l) forbidden 
states. 

Supersymmetrie transformations are able to transform the deep potential 
of Kondö et al. (1989) into a shallow one, allowing a comparison with the po­
tential of Chatwin et al. (1970). Suchtransformations must be performed for 
each partial wave separately but assume that the potential does not depend 
on energy. To this end, we freeze the energy dependence of the potential at 
25 MeV and focus on the dominant l = 18 partial wave at this energy. The 
l = 18 effective potential for Ec.m. = 25 MeV is represented below in Fig. 7 
(2n = 0, thick lines). 

Figure 5 displays the first zeros of the l = 18 Jost function or poles 
of the S matrix in the complex k and E planes (full dots). The poles are 
numbered by increasing real parts of the energy; a. Ietter indicates whether 
the pole corresponds to a normalizable state (N, Im ko > 0) or to a resonance 
(R, Im k0 < 0). Empty dots represent the poles related to the real part 
of the effective potential. Poles under the real k a.xis, which correspond to 
resonances, are calculated with the complex scaling ( or complex rotation) 
method (Ho 1983). 

The real part of the potential has two bound states, with a positive­
imaginary wave number. The S-matrix poles representing resonances of this 
real part are symmetric with respect to the imaginary k axis. The first two 
resonances are very narrow. The negative imaginary part of the potential 
modifies these properties. Poles become non symmetric and receive an in­
dividual physical interpretation (Sparenberg and Baye 1996). Normalizable­
state k values (N1 and N2) become complex, with a. negative real part. Res­
onances in the right-hand side of the k plane move away from the real axis 
and become broader (R3' to R6'). The first three resonances with Rek < 0 
become square-integrable solutions N3 to N5 with Re E positive. The other 
resonances remain under the real k axis and become narrower such as R6. 
Resonance energies are not any more symmetric with respect to the imagi­
nary axis. 

Figure 6 compares the phase shifts of the real part of the potential (thin 
line) and the scattering matrix of the full complex l = 18 potential (thick 
lines). The Levinson theorem ( 17) is verified in both cases. The phase shift 
obtained with the real part of the potential starts from 211" at E = 0 since this 
real potential has two bound states. The complex phase shift starts from 511" 
at E = 0 since the complex potential has :live normalizable states N1 to N5. 
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Fig. 6. l = 18 phase shift of the real part of the potential of Kondö et al. (1989) 
(thin line), and scattering matrix ISI exp(2io) for the full complex potential (thick 
lines). 

For the full complex potential, the influence of the two resonances of the real 
part disappears. This is due to the fact that the poles N3 and N4 in Fig. 5 
are respectively nearly symmetri~ to R3' and R4' with respect to the k-plane 
origin. On the other hand, a broad resonance arises from the pole R5', while 
the associated pole N5 changes into a square-integrable state and leads to a 
decrease of the phase of the scattering matrix. 
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imaginary part. 



Phase-Equivalent Complex Potentials 311 

Potentials Va18 , vr, ... , Vi~8 whieh are phase equivalent to the l = 18 
potential of Kondö et al. (1989) are shown in Fig. 7 (Sparenberg and Baye 
1996). The states are removed aceording to inereasing real parts ofthe energy 
(i.e. sueeessively N1, N2, ... , N5 in Fig. 5). For the first four transformed 
potentials, the eomments are identieal: the imaginary part of the potential 
is almost not modified, while the depth of the real part regularly deereases. 
The last potential Vl08 is very different. This kind of behaviour has already 
been met in Sect. 4.1. Figure 7 also shows that the potential singularity at 
the origin inereases at eaeh state removal, in agreement with (16). 

In Fig. 7, the supersymmetrie partners of the deep potential of Kondö et 
al. (1989) are eompared with the shallow potential of Chatwin et al. (1970) 
( dotted lines). This last potential is close to potential Vl 8 obtained by re­
moving four normalizable states from the deep potential, whieh eorrespond to 
the three l = 18 forbidden states and to one additional state possibly related 
to a physieal resonanee. Similar results are obtained for other partial waves, 
but with a different number of transformations. By removing all normalizable 
states whieh Iead to non-oseillating potentials, the resulting Supersymmetrie 
partner of the deep potential of Kondö et al. (1989) is very close to the shal­
low potential of Chatwin et al. (1970) over the whole angular-momentum 
range eonsidered (see Sparenberg and Baye 1996). Moreover, the effect of 
Supersymmetrie transformations on the real part of the potential is almost 
identieal when the energy appearing in the potential of Kondö et al. (1989) 
is allowed to vary. Consequently, the real part of the Supersymmetrie partner 
does not depend on energy in this domain, in agreement with a property 
of the shallow phenomenologieal potential. This real part depends on an­
gular momentum but ean be simulated over a limited energy range by an 
I-independent potential. 

5 Conclusions 

The teehnique of supersymmetrie transformations has been extended to the 
eonstruetion of potentials whieh are phase equivalent to eomplex potentials. 
The formalism for the real ease ean be used without significant modifieation 
exeept for the replaeement of the bound-state wave functions by normalizable 
solutions of the eomplex potential. 

For eomplex potentials with a small imaginary part, the removal of the 
normalizable states Ieads to potentials whose real part is very close to the 
potentials obtained after removing bound states from the real part of the 
original potential. On the eontrary the imaginary part undergoes modifiea­
tions whieh eannot easily be predicted. A weak imaginary term provides a 
way of removing narrow resonanees from the real part without affecting the 
rest of the phase shift. 

The modifieation of the Jost function under a. pair of supersymmetric 
transformations clarifies the fact that the eollision matrix does not change in 



312 Daniel Baye, Jean-Marc Sparenberg, Geza Levai 

spite of the suppression of a normalizable solution. The role of the singularity 
in relation with a conjectured generalized Levinson theorem has also been 
emphasized. 

The construction of phase-equivalent potentials should reduce the discrete­
ambiguity problern in the optical-model description of nuclear collisions. More 
general transformations than the removal of bound states can also be consid­
ered: moving bound states or adding new states while keeping phase equiva­
lence are also possible. In principle the whole bound spectrum can be modi­
fied in an arbitrary way but the resulting potentials would not necessarily be 
simple enough to allow a useful physical interpretation. 

The Supersymmetrie technique can be applied to other aspects of the 
inverse problem. An application to the reconstruction of a potential from its 
phase shifts at fixed angular momentum is in progress. 
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Exactly Solvable ModelsforTwo-Dimensional 
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Abstract. A wide dass oftwo-dimensional exactly solvable models is constructed 
on the basis of the inverse scattering problern in the ad.iabatic representation. Ex­
actly solvable models with prescribed spectral properties are constructed by using 
the generalized method of Bargmann potentials. Two-d.imensional potentials are 
presented within the consistent formulation of both mutually connected inverse 
problems to which the initial task is reduced: the parametric problern and the mul­
tichannel problern for the system of gauge equations. The algebraic technique is 
elaborated for the reconstruction of time-dependent and time-independent two­
d.imensional Bargmann potentials and correspond.ing solutions in a closed analytic 
form on the basis of the nonstandard parametric inverse problern with scattering 
data depend.ing on a coord.inate variable. Specific examples of exactly solvable mod­
els are given within the parametric problern on the entire line and on the half-line. In 
particular, transparent symmetric and nonsymmetric potentials, parametric family 
of phase-equivalent potentials, two-d.imensional potentials without and with bound 
states are presented with the correspond.ing solutions of the parametric problem. 

1 lntroduction 

The solution of complex multidimensional problems is often based on the 
dimensional reduction procedure of space realized by some partial expansion 
of the wave function of the original Hamiltonian over the known basis func­
tions (see, for instance, Newton (1966)). In this sense the procedure of the 
adiabatic representation is a variant of dimensional reduction of space, too, 
because it leads to two the effective scattering problems in the spaces of a 
lower dimension, than the original M = 8 x M. One of them is the parametric 
scattering problern in the space M for the Hamiltonians hi (x) parametrically 
dependent on coordinate variables x, belanging to the external space, x E 8. 
Another problern is the effective scattering theory in the space 8 for the sys­
tem of gauge equations with induced gauge fields, generated by the procedure 
of adiabatic expansion of the total wave function ll'(X) = ~ J <Pn (x; .)Fn(x) 
over eigenstates <Pn (x; y) of the self-adjoint Hamiltonian hf (x). A consistent 
solution to both problems provides a complete solution of the initial one. 
At the same time the method of adiabatic representation is very useful for 
investigation of many real quantum systems with some degrees of freedom 
the separation of which is not valid, in so far as it allows one to take into 
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account the mutual influence of slowly changing external (collective) and 
rapidly changing internal fields. 

The direct scattering problern treated in the adiabatic approach has a lang 
history that datesback to the studies ofBorn and Oppenheimer(1927), Born 
and Fock(1928). On the contrary, the inverse problern in the adiabatic ap­
proach has been proposed by the author quite recently (Suzko et al.(1989), 
Vinitsky and Suzko (1990)) and further developed in (Suzko (1993a), Suzko 
(1993), Suzko (1992), 5, 6). In this way, the premises were created for gen­
eration of a wide dass of exactly solvable models for multidimensional and 
multipartide objects. This metbad of analytic modeHing is based on the con­
sistent formulation in a dosed analytic form of both connected problems: the 
multichannel problern for the system of equations with a covariant derivative 
and the parametric problem. The main point is that the potential and the 
basis wave functions have to be found from the scattering data parametri­
cally depending on the spatial variables. After that, it is easily to surmise 
how the technique of Bargmann potentials and Darboux transformations can 
be used (Vinitsky and Suzko (1990), Suzko (1992), Suzko (1993a), Suzko 
(1993)). Forthis the Jost functions have tobe rational, as usual, but para­
metrically depending on spatial variables through the dependence of spectral 
characteristics on them. Now this algebraic technique, based on the Gelfand­
Levitan (Gelfand and Levitan (1951), Levitan (1984))) and Marchenko meth­
ods (Agranovich and Marchenko (1960), Marchenko (1977)), is tested by 
applying it to a nurober of specific two-dimensional examples, in particu­
lar, transparent symmetric and nonsymmetric potentials, reconstruction of 
two-dimensional potentials without and with bound states in the parametric 
problems on the entire line and on the half-line. 

Exactly solvable three-body models with two-center spheroidal potentials 
have been developed in the adiabatic approach (Suzko (1992)) on the basis 
of the metbad of generalized algebraic Darboux and Bargmann transforma­
tions with some varying parameters (Rudyak, Suzko, Zakhariev ( 1984), Suzko 
(1984,1985), Suzko (1986)). Generalized Darboux and Bargmann transfor­
mations have been suggested and elaborated to construct a wide dass of 
potentials and corresponding solutions to the Schrödinger equations for vari­
able values of orbital angular momentum Land energy E. It has been shown 
(Suzko (1984,1985)), the generalized Bargmann transformations with some 
varying parameters are related to the generalized Darboux transformations 
(Rudyak, Suzko, Zakhariev (1984) and can be obtained as their superpo­
sition. The multichannel generalization of this approach has been given by 
Suzko (1986) and the analytical relationships were established between dif­
ferent potential matrices and their pertinent solutions with variable values of 
E and L. In particular cases, when L = const or E = const, the obtained re­
lations are transformed into familiar expressions for potentials and solutions 
of the Darboux-Bargmann transformations. 
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Later on the method suggested by Suzko (1984,1985) was caught up by 
Rudyak and Zakhariev (1987) and then, unfortunately, without reference to 
the origin it was used by Schnizer and Leeb (1990,1993). The studies per­
formed for the Schrödinger equations with some varying parameters allowed 
us to construct algebraic Bargmann and Darboux transformations (Suzko 
(1993a), Suzko (1993), Suzko (1996)) for equations with an additional func­
tional dependence h(r) in the right-hand side. Under a certain choice of 
h(r), these generalized transformationsturn into the familiar Bargmann and 
Darboux transformations with varying (Suzko (1984,1985), Suzko (1986), 
Rudyak, Suzko, Zakhariev (1984)) and with fixed energy, angular momen­
tum, Coulomb coupling constant and so on. 

Based on the generalized multichannel and one-channel technique of -
Bargmann potentials for the gauge system of equations and the parametri­
cally dependent equations, the elaborated method of adiabatic representation 
allows us to generate a wide dass of exactly solvable multidimensional mod­
els. We will reconstruct the potential V(x, y) and find the functions of the 
moving basis by applying the parametric inverse problern with the scattering 
data { S(x, k), fn (x), ,; } depending on the adiabatic spatial variables. This 
dependence is determined by solving the inverse problern for the system of 
equations. When the functional dependence of scattering data on the external 
coordinate variable is given, the matrix elements of the induced vector and 
scalar potentials can be constructed and studied in terms of first obtained 
exact solutions of the parametric problem. The full solution of the original 
problern is then obtained by solving the system of multichannel equations 
with respect to the expansion coefficients. The suggested approach permits 
investigation of the dynamical quantum transition amplitudes by using exact 
solutions of parametric task for spectral data with prescribed properties (8). 
Models of this type can be employed to study certain geometric aspects of 
quantum scattering theory and to seek analytic solutions to nonlinear evolu­
tion equations. Thus, the parametric inverse problern is of primary interest 
by itself and not only as a constituent of the solution of the initial multidi­
mensional problern in the adiabatic approach. 

Here we have considered a set of certain examples of exactly solvable para­
metric models to show how the technique of Bargmann potentials is extended 
to the two-dimensional quantum systems. For a given functional dependence 
of spectral characteristics on the external coordinate variable, we reconstruct 
transparent symmetric and nonsymmetric potentials in another spatial coor­
dinates with the pertinent solutions of the task on the whole axis. Parametrie 
family of phase-equivalent potentials with one and two bound potential curves 
and their eigenfundians are constructed. By specifying the functional depen­
dence of spectral data on time through the dependence on it of the parametric 
adiabatic variable, time-dependent transparent potentials and corresponding 
basis functions for two-level systems are presented. We give also an example 
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of reconstruction oftwo-dimensional potentials in a. consistent formulation of 
the two inverse problems to which the initial problern is reduced. 

2 Adiabatic representation 

The adiabatic representation method is elaborated on the basis of a consistent 
formulation of both connected problems: the parametric problern and the 
multichannel problern for the system of equations with a covariant derivative. 
In this approach the Hamiltonian H is decomposed into 

(1) 

where hf = hf (x) is the family of Hamiltonians depending parametrically 
on the slow variables. The searched wave function tP"(X) (X= {x, y}) of the 
total Hamiltonian is given by the expansion 

jtP"(X) >= ln >< njtP" >= L J 4>n(x; .)Fn(x) 
n 

in the eigenstates 4>n (x;'.) of the self-adjoint parametric Hamiltonian 

hf (x)4>n(x; .) = fn(x)4>n(x; .); 

hf (x) = -.dy + V(x, y). 

(2) 

(3) 

Here (.) stands for the variables y to be specified in every particular problem. 
Since the Hamiltonian hf (x) is self-adjoint, its eigenfunctions form a complete 
orthonormal set: 

ln >< nl = 8(y- y'); < n Im>= j 4>~(x;y)4>m(x;y)dy = <~"nm Vx. (4) 

The symbol I; J in ( 1) denotes summation over the states of the discrete 
spectrum fn(x) E ad(hf (x)), and integration over the states ofthe continuous 
spectrum, fk(x) E ac(hf(x)). lfbasis functions 4>n(x;y) are specified on a 
compact set of values y E M, all of them are square integrable, and the 
spectrum is purely discrete, as in the case for the spherical parametrization 
of space with angular variables y E sM. Depending on a specific formulation 
of the problem, use is made of a compact or noncompact base manifold. Upon 
substituting the expansion (1) into the initial Schrödinger equation 

HtP"(X) = EtP"(X) (5) 

and using relations of orthonormalization (4), we arrive at the multichannel 
system of equations for the expansion coefficients F = { Fn}: 

[-D2(x) + V(x)- i8j8t]F(x) = 0. (6) 
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Here the lengthened derivative is D(x) = ['Y'x- iA(x)] and A(x) and V(x) 
is the effective vector and scalar potentials, respectively, matrix elements of 
which are generated by the basis functions 

Anm(x) =< 4>n(x; .)li'Y'xl4>m(x; .) >, (7) 

Vnm(x) =< 4>n(x; .)ih1 (x)l4>m(x; .) >= fn(x)dnm· 

The representation of ( 1) is invariant with respect to choosing a basis set of 

functions: 

illi >=in>< nilli >=in> utu < nllli >= j4>'(x; .) > F'(x). 

Then, at any point x new basis functions 14>' > arc related with 14> > by the 

unitary transformation U(x), and F(x) is replaced by F'(x): 

l4>(x; .) >= l4>'(x; .) > U(x), F(x) = ut(x)F'(x). (8) 

Under this transformation the effective matrices V(x) and A(x) are trans­

formed as gauge scalar and vector fields 

in consequence of which the lengthened derivative in (5) is a covariant one. 
The matrix elements of the operator A realize the coupling between equa­

tions in the system (5) in contrast with ordinary coupled channel methods. 

Therefore anti-Hermitian operator A is interpreted as the operator of nonadi­
abacity. Here we assume that h(x) is real, limited and continuous in x. Then 
the eigenfunctions are real-valued and orthorrormal 

< <Pn(x) I <f>m(x) >= dnm \:fx. 

After differentiation of this relation we obtain that the nonadiabatic couplings 
Anm = - Amn are real and antisymmetric in n and m. 

Under the unitary condition of gauge transformation U 

U(x)U- 1 (x) = 1, ut (x) = u- 1(x), \:fx E B. (10) 

that follows from the condition of completeness of the sets 4> and 4>' one 

can annihilate A by the corresponding choice of basis set of functions 4>' and 

gauge transformation U. Really, the transition to the representation of a fixed 

basis ie(y) > with using (12) 

l4>(x;y) >= ie(y) > U(x), U(x) =< e(y)l4>(x;y) >, (11) 

the definition (7) and (4) allows one to rewrite A in terms of the operator 

U(x): 

(12) 
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It is evident from (9) that the matrix of the gauge field A vanishes in the 
absence of singularities of A(x), the matrix of the scalar potential can be 
expressed in the representation of the fixed basis le(y) >. Then the system 
(5) is reduced to a system of ordinary equations coupled through the effective 
potential matrix 

(13) 

for new coefficients F' connected with F by (12). After that, the standard 
methods of multichannel inverse problern are applicable to the system of 
equations ( 15), provided that the corresponding scattering matrix and in­
formation about the states of the discrete spectrum - their positions and 
normalization constants- are known. 

Thus, the inverse scattering problern in the adiabatic approach is formu­
lated by consistently reducing it to a multichannel one for the system of gauge 
type Eqs.(5) and a parametric one (2). 

3 Two-dimensional exactly solvable models 
in the parametric inverse problern 

Now we shall construct a wide dass of potentials for which solutions to the 
parametric Schrödinger equation in a closed analytic form can be found. 
Based on the parametric statement of the inverse problern (Vinitsky and 
Suzko ( 1990), Suzko ( 1993a), Suzko ( 1993)) we consider reconstruction of the 
two-dimensional Bargmannpotentials V(x; y). The scattering matrix S(x; k) 
of the parametric equation 

[-d2 fdy2+ V (y) + V(x;y)]cz>(x;y) = t:(x)cl>(x;y) (14) 

is defined by the Jost functions f±(x; k) dependent on x as the parameter 

S(x; k) = f_(x; k)(f+(x; k))- 1 . (15) 

From the definition of the Jost functions through the Wronskian for each 
fixed x 

f±(x;k) = W{!±(x;k,y),<p(x :,k,y)} Vx 

it follows that 

f± (X; k) = lim f± (X; k, y) 
y-+0 

and the Jost solutions together with the Jost functions have the property 
f*(x;k,y) = f(x;-k*,y). Normalization functions -y~(x) of the potential 
curves t'n (x), as usual, are defined in terms ofthe Jost solutions at k = iKn (x), 
En(x) = -K;(x). 
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00 

1;;- 2 (x) = J jJ(iKn (x), y)j 2dy. (16) 

0 

An algebraic procedure of solution of the parametric inverse problern has been 

worked out in (Suzko (1993a), Suzko (1993),5, 6). In this papers we suggested 

to use the Jost functions that are rational and parametrically depending on 

the spatial variables of x through the dependence of spectral data on them 

0 k- io:(x) 
f(x; k) =f (k) rr k + iß(x). (17) 

The parametric Jost function (6) defined as a function of the coordinate 

variable x has N curves k = ißj (x) of simple poles and N curves of simple 

zeros on the k = io:j(x). In o:(x) there arenot only zeros on the imaginary 

semi-axiscorresponding to bound states ReKj(x) = 0, lmKj(x) > 0 but also 

zeros in the lower half-plane with Imvj(x) < 0 (the number of simple poles 

of ßj equals the total number of Kj and Vj). In this case the scattering matrix 

and spectral function assume the form 

0 rr (k + io:(x))(k + iß(x)) 
S(x; k) =S (k) (k- iß(x))(k- io:(x))' 

p(x; k) =P (k) I1 (k- iß(x))(k + iß(x)). 
(k + io:(x))(k- io:(x)) 

(18) 

For such S(x; k) and p(x; k) the kernels of integral equations of the paramet­

ric inverse problern can be represented as sums of terms with a factorized 
N 

dependence on the fast variable y: Q ( x; y, y') = 2:; B; ( x; y) B; ( x; y'). When 
the kerne! Q is inserted into the base parametric equation of the inverse 

problern 

oo(y) 

K(x; y, y') + Q(x; y, y') + j K(x; y, y")Q(x; y", y')dy' = 0, (19) 

y(O) 

i t is evident that the kerne! of the generalized shift !{ ( x; y, y') also becomes 

degenerate, K(x; y, y') = 2:~ K;(x; y)B;(x; y') and integral equations (19) 

become algebraic. Then, the spherically nonsymmetric potential and solutions 

corresponding to it can be expressed in a closed analytic form in terms of 

the known solutions and spectral characteristics by using the generalized 

equations of the parametric inverse problern 

0 d 
Vf (x; y) =V (y) =f 2 dy K(x; y, y), (20) 
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oo(y) 

0 J I O I I cli(x; k, y) =cli (k, y) + K(x; y, y) q> (k, y )dy . (21) 

y(O) 

Integration limits in (19), (21) and signs in (20) depend on the particular 
approach to the inverse problem. Limits from y to oo (from y to a) and 
minus sign correspond to the generalized Marchenko formulation (Pivovarchik 
and Suzko (1982)) (R-matrix inverse problern Zakhariev and Suzko (1990)). 
Limits [0, y] and plus sign represent the Gelfand-Levitan approach. 

3.1 Exactly solvable models in the generalized Marchenko 
approach on the semi-axis 

0 

For the parametric inverse problem, radial or on a semi-axis, when V (x; y) = 
0 the kernel of the basic integral equation (19) in the Marchenko approach 

00 

Q(x; y + y1) = _!._ j [1- S(x; k)] exp[ik(y + y1)] 
27r 

-oo 

N 

+ L M;(x) exp[-Kn(x)(y + y1 )] 

n 

with the Jost functions (6) is rewritten as follows 

N 

Q(x;y+y1) = -ii.:Res S(k = ibn(x))exp[-bn(x)(y+y')] 
n 

N 

+ L{-iRes S(k = iKn(x))exp[-Kn(x)(y + y1 )] 

n 

+M,; exp[-Kn(x)(y + y1)}. 

(22) 

(23) 

Following the procedure of constructing phase-equivalent potentials sug­
gested by Zakhariev and Suzko (1990) for the one-dimensional problern and 
by Suzko (1993a), Suzko (1993) for the parametric problem, one can cancel 
out the second summation in the right-hand side of (23) if the normalization 
functions M,;(x) are chosentobe equal to i Res S(k) at k = iKn(x) 

0 2 

Mn (x) = i Res S(k)lk=i~~:n(x)· (24) 

0 

As a result, we obtain the simpler expression for the kerne! Q(x; y) =Q (x; y) 



322 A.A. Suzko 

o N 

Q (x; y + y') = -i I: Res S(k)lk=ibn(x) exp[-bn(x)(y + y')] 
n 

N 

= l:An(x) exp[-bn(x)(y + y')], (25) 
n 

where 

(26) 

0 

Inserting the kernel Q (x; y, y') (25) into the parametric equations of the 

inverse problern (19)-(21) we obtain 

0 d2 
V (x; y) = -2 dy2 lndet IIP(x; y)ll; (27) 

0 

f±(x;k,y)= 

(± .k) ~ A ( )P-1(. )exp[-(bn(x)+bn'(x)=fik)y] (2S) 
exp t y + ~ n X nn' x,y (bn(a:)=fik) 

where Pnn'(x; y) is defined as follows 

P ( . ) _ J , A ( )exp[-(bn(x) + bn'(x))y] 
nn' X, Y - nn + n X bn(x) + bn'(x) . 

The corresponding algebraic formulae for the one-dimensional Bargmann 

potentials and their solutions (Zakhariev and Suzko (1990)) can be directly 

obtained if we put h:n(x) := h:n and bn(x) := bn. 

3.2 Parametrie family of phase-equivalent potentials 

At the second stage we find a family of potentials and solutions for normaliz­

ing functions M~(x) that do not obey the condition (24). Since the scattering 

S ( x; k )-function is irreiependent of the choice of the normalization functions 
0 0 

M;(x), we have S(x; k) =S (x; k). As a result, when V (x; y) # 0, the integral 

term in the generalizecl expression for Q(x; y, y') 



Two-Dimensional Exactly Solvable Models 323 

00 

1 J 0 0 0 Q(x;y,y') = 27r [S (x;k) -S(x;k)] f (x;k,y) f (x;k,y') 
-00 

N o o 
+ LM,;(x) f (i~~:n(x),y) f (i~~:n(x),y') 

n 

No 0 2 0 0 

- L Mno (x) f (ill:no(x),y) f (ill:no(x),y') (29) 

0 

vanishes. Since, on the other hand, both V(x; y) and V (x; y) possess the same 
potential curves ( curves of bound states) &n ( x) and different normalization 

0 2 

factors M; ( x) and Mn ( x), respecti vely, we find 

N 0 2 o o 

Q(x;y,y') = L(M,;(x)- Mn (x)) f (i~~:n(x),y) f (i~~:n(x),y'). (30) 
n 

And similarly, the kernel of the generalized shift K(x; y, y') is written as 

N o2 o 

K(x;y,y') =- L(M;(x)- Mn (x))f(i~~:n(x),y) f (i~~:n(x),y'). (31) 
n 

Inserting K(x; y, y') a.nd F(x; y, y') into the basic parametric Marchenko 
Eqs.(19)-(21) we derive the following relations for the Jost potential and 
solutions 

0 d2 
V(x; y) =V (x; y) + 2 dy2 lndet P(x; y); (32) 

0 

f±(x;k,y) =!± (x;k,y)-

The explicit dependence on fast variables is defined by the Jost solutions (28) 
determined at k = i~~:n ( x), i.e. on the level-energy curves depending on the 
parametric variable x. Here we employed the notation 

0 2 100 0 0 Pnm(x;y) = Onm + (M,;(x)- Mn (x)) Y f (i~~:n(x),y') f (i~~:m(x),y')dy'. 

Since S(x; k) from (7) corresponding to the two-dimensionalpotentials V(x; y) 
0 

(32) is independent of the normalizations M;(x), S(x; k) =S (x; k) the for-
mula (32) represents a parametric family of phase-equivalent potentials de­
pending on N parameters in the addition to the parametric spatial variable 
x. Among them there isapotential with the condition (24). 
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3.3 Bargmann potential with a single potential curve 

Bargmann potential in the simple case, when the scattering S(x, k)-matrix 
has two pole lines k = i~~;( x) and k = iß( x), is presented on figure 1. Assurne 
that 

k-i~~;(x) 
f(x; k) = k + iß(x); Im{~~;(x)} = Im{ß(x)} = 0, 

l.eo, 
S(x, k) = (k + i~~;(x))(k + iß(x)) 

0 

(k- i~~;(x))(k- iß(x)) 

One pole curve corresponds to the zeros on the k = i~~;(x) of the parametric 
J ost function f + ( x; k)), the other pole curve corresponds to the pol es on 
the k = iß(x) of the parametric Jost function f _ (x; k)o We have necessarily 
ß(x) > 0 (for the Jost function f+(x; k) tobe analytic in the upper half-plane 
k for all x) 0 When K ( x) > 0, we have the bound state line ( the potential curve 
of bound state &(x) = -~~; 2 (x)), when K(x) < 0, we have no bound stateso 
Factorization of the kernel Q(x; y, y1 ) 

00 

1 1 j [ (k+i~~;(x))(k+iß(x))] 0 1 

Q(x;y+y) = 27r 1- (k-i~~;(x))(k-iß(x)) exp[zk(y+y)] 
-oo 

+ M 2 (x) exp[-~~;n(x)(y + y1 )] (33) 

is achieved by a special choice of normalization function M 2 (x) = M;(x)o In 
accordance with (24) we have 

o 2 
0 (ß(x) + ~~;(x)) 

Mn (x) = zRes S(k)ik=i~<"(x) = 2~~;(x) (ß(x) _ K(x)) 0 (34) 

Closing the integration contour by a semicircle of infinite radius in the upper 
half-plane of complex k in (33) and making use of the residue theorem with 
account (34), we find 

Q(x; y + y1 ) = 2ß(x) (ß(x) + K(x)) exp[-ß(x)(y + y1)]o (35) 
(ß(x)- K(x)) 

Solving now the parametric Marchenko equations with this kernel, we find 
the kernel 

K(x; y, y1) = _2ß(x) c(x) exp[-ß(x)(y + y1
)], 

1 + c(x) exp[-2ß(x)y] 
(36) 

where c(x) = (ß(x) + ~~;(x))/(ß(x)- ~~;(x)), determining the potential V(x, y) 
and the corresponding solution of the parametric Schrödinger equation 

Vxoy --Bß2 x c(x)exp[-2ß(x)y] 
( ' ) - ( ) {1 + c(x) exp[-2ß(x)y]p 

1 
= - 2ß2 (x) cosh2 [ß(x)(y- Yo)]; (37) 
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{ 2ß(x) exp[-2ß(x)(y- Yo)] } 
J±(x;ky) =exp(±ky) 1+ (±ik-ß(x))(1+exp[-2ß(x)(y-yo)] 0 (38) 

Herewe used the substitution exp(2ß(x)yo) = (ß(x) + x:(x))/(ß(x)- x:(x))o 
If x:(x) < 0 't:/x, the potential (37) is not deep enough to produce of abound 
state curve and the potential in the form (37) corresponds to S( x, k) with 
one pole curve on k = iß( x) 0 Depending on the pa.rticular problem, the pole 
curves can, in general, behave in different ways, it is only necessary to take 
into account the condition ß(x) > x:(x) that follows from (34), because the 
norma.liza.tion function has to be positive M 2 > 00 

In the present case (Figo1), we specify x:(x)) and ß(x) as follows 

V2x: V2ß 
x:(x) = cosh(x:x- 1305)' ß(x) = cosh(ßx- 15) + 003 , x; = 006 , 13 = 0070 

The two-dimensional potential and the normalized wave functions 1;0( x:( x), y) 
corresponding to S( x, k) with these x:( x) and k = ib( x) a.re presented in 
Figso1A and IBO In complete analogy with the procedure (30)-(32) we can 
construct a whole family of phase-equivalent potentials differing from each 
other of the normaliza.tion M 2(x) of the potential curveo 

3.4 More general model with two potential curves 

Let us now present a. more complicate case with two potential curves in 
the problern on the semi-axiso To simplify the problem, we again choose the 

0 

reference potential V (x; y) = 00 Then the Jost function can be written in 
the form 

f(x; k) = IJ (k + iß1 (x))(k + iß2(x)) 
0 

(k- ix:1(x))(k- ix:2(x)) 
(39) 

We take the normalizations of bound state wave functions in the form (24)0 
Thereby the potential V ( x, y), is determined only by the spectral data x:; ( x) 
and ß;(x), i = 1, 2 and corresponds to one of the phase-equivalent poten­
tials 0 From normalizations M~ ( x) being posi ti vely definite the condi tions 
ß2 ( x) 2 x:2 ( x) and ß1 ( x) 2 x:1 ( x) follow 0 The spectra.l data have been chosen 
in the following way 

( ) - V2x:l ß ( ) - V2ßl X:1 X - h( ) , 1 X - ( ) + 003, cos x: 1x- 408 cosh ß1x- 5 

V2x:2 V2ß2 
x:2(x) = h( 5) + 0.4, ß2(x) = h(ß 5) + 0°5, 

COS X:1X- COS 2X-

x;l = 0°6, ßl = 1\:2 = ß2 = 0°7° 

From the relations (27), (28) we obtain the two-dimensional potential V(x, y) 
Figo2A and the corresponding normalized wa.ve functions 1;01,2(x, y) Figo2B,C 
of the self-energy curves ['12 ( x) 0 The behaviour of the potential and wave 
functions becomes more complicated in comparison with the one correspond­
ing to S(x; k) with two pole curves, presented in Figol. 
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4 Reflectionless potentials in the parametric problern 

The simplest case corresponds to reflectionless potentials in one of the spatial 
variables or in both adiabatic and fast variables. If the reflection function 
sref is chosen to be equal to zero at all energies and at all values of adiabatic 
variable x, then the integral in the relation for Q(a:; y, y') vanishes and only 
the sumover bound states remains (see the contribution to these Proceedings 
(8)). In this case the transmission coefficient str whose modulus is equal to 
1 is a rational function 

(40) 

Symmetrical transparent potentials for each fixed value of x and appropri­
ate wave functions are completely defined by the energy levels (5) since the 
normalization functions can be determined by them 

2 ( ) 0 t?' ( ) ( ) rr I Km (X) + Kn (X) I 
Fn X = zResS k /k=i",n(x) = 2Kn X -' Km(x) _ Kn(x) . (41) 

m,..n 

The relations for the potentials and solutions can be expressed in terms of 
the normalized eigenfunctions and represented in a more symmetric and con­
venient form. Following (Calogero and Degasperis (1982), 5), introduce the 
function 

An (x; y) = /n (x) exp( -Kn (x )y). 

Then the formula for K(x; y, y') can be written as 

N 

K(x;y,y') =- Lln(x)7Pn(x;y)exp(-Kn(x)y') = 
n 

N 

- L 7Pn(x; y)>.n (x; y). 
n 

For the normalized eigenfunctions 7Pn (x; y) from (21), we obtain 

N 

7Pn(x;y) = L>.j(x;y)Ajn1(x;y) 
j 

with the matrix Ajn(x; y) given by 

A- (. ) -tS· Aj(x;y)..\n(x;y) 
1n X, Y - Jn + ( ) + ( ) . . Kn X Kj X 

Finally, the kernel K(x; y, y') and the potential can be represented as 

(42) 

( 43) 

(44) 



Two-Dimensional Exactly Solvable Models 327 

N N 

K(x;y,y') =- LLAj(x;y)A;-,;(x;y).\n(x;y), 
n j 

m 

( 45) 
n 

Note, these relations are obtained for the specific case of zero reflection func­
tion sr (X; k) = 0 V X. The set of time-ineiependent and time-eiependent trans­
parent potentials have been constructed in (5, 6, 7) for which the parametric 
Schrödinger equations have exact solutions. Examples of the reconstruction 
of potentials that are symmetric and transparent in y with various param­
eters are presented in Figs.3 and nonsymmetric transparent potentials are 
presented in these Proceedings (8). 

5 Exactly solvable models 
with time-rlependent potentials 

Based on the technique of degenerate kernels, we gave a simple example of a 
two-dimensional exactly solvable model for a two-level system with a period­
ical dependence of the dynamical variable x(t) on time (Suzko, Velicheva 7). 
We defined two terms in the following way 

&1 = -1/ch2 (x/3), &2 = -(1/ch(x/2) + 0.25) 2 

with 
x(t) =~ (1- a cos(wt)), 

where ~= x(t = 0) corresponds to the time-ineiependent case. We recon­
struct symmetric transparent potentials and appropriate basis wave func­
tions that are determined by the energy Ievels due to choosing the nor­
malization functions ~~ ( x ( t)) in the form ( 41). The dynamical behaviour 
of the potentials and the pertinent eigenfunctions is presented for wt equal to 
0, 1rj6, 7r/3, 1rj2, 1r in Figs.(3a,b,c,d,f)- (5a,b,c,d,f), respectively, and a = 1. 
Since their behaviour is mirror-symmetric with respect to the line wt E (0, 1r), 
it is not shown. It is easy to see that the potential and functions change 
from very simple one-dimensional ones for wt = 0, Figs.3a - 5a, to quite 
complicate two-dimensional potentials and functions for all other values of 
wt f. 0. In our case the potential curves have been chosen when t = 0, 
x(O) = 0 and E1 = -1, E2 = -1.5625. A one-dimensional transparent po­
tential with two bound states and corresponding wave functions are imme­
diately obtained from more general relations Suzko (1993a), Suzko (1993) 
of the parametric task. When wt f. 0, we have two-dimensional potentials 

and functions. At wt = 1r /2 and wt = 37r /2, x(t) coincides with ~ and 
we have the two-dimensional time-ineiependent case, while at wt = 21r, the 
system comes back into the one-dimensional position with the initial states 
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I<Pn(x(t); y) >= I<Pn(Y) >. Note, the eigenfunctions 'th(x; y) are symmetric 
and "P1(x; y) are antisymmetric in y at each fixed values of x(t) a.'l it is re­
quired for the problern on the entire axis -oo < y < oo with a potential 
V(x; y) symmetric in y. 

Obviously, we can choose another dependence on time, and other initial 
spectral data with prescribed properties. For instance, the two-dimensional 
or three-dimensional dependence of spectral characteristics on the paramet­
ric adiabatic variables can occur. In our paper from these Proceedings we 
have presented examples of transparent but nonsymmetric time-dependent 
potentials. In such a way one may also investigate properties of adiabatically 
driven quantum systems, Hamiltonians for which are slowly varying functions 
of time. The transition amplitudes in this case are defined by the matrix el­
ements of an exchange interaction A(x) that can be calculated in terms of 
analytic basis functions (Suzko, Velicheva 8). The basis wave functions found 
in this way can be used to study a number of problems in nuclear, atomic, 
and molecular physics. 

So, we have considered certain examples of exactly solvable parametric 
models to show how the technique of Bargmann potentials is extended to the 
parametric family of the inverse problems. For a given functional dependence 
of spectral characteristics on the external coordinate variable, one may derive 
a large dass of exactly solvable multidimensional models on the ba.'lis of the 
parametric inverse problern in the space of a lower dimension. 

6 Constructing two-dimensional exactly solvable 
models in a consistent formulation 

Basedon the multichannel and one-channel technique ofBargmann potentials 
for a transformed system of Eqs.(5) and the parametrically dependent Eq.(2), 
the method of analytic modeling of effective interactions in complicated mul­
tidimensional problems and of finding appropriate solutions has been sug­
gested by Vinitsky and Suzko (1990) and developed in (Suzko (1993a), Suzko 
(1993), 5, 6). Theinverse scattering problern for the system of equations (5) 
consists of several steps: the determination of the S-matrix in terms of known 
multidimensional amplitudes and subsequent reconstruction of effective vec­
tor, A, and scalar, V, potential matrices, as well as solutions. It is solved 
by using a unitary transformation of the gauge type (9), (10) tha.t reduces 
the system of Eqs.(5) to a system of ordinary equations coupled through the 
effective potential matrix (15). 

We will analyze the simplest case in which the reconstruction ofthe matrix 
0 

of the potential interaction IIVij(x)ll is performed with II V;j (x)ll = 0 taken 
for the reference potential. For reflectionless potential matrices, the matrix 
elements Q;j(x, x') involves only the sumover the bound states 
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N 

Qij (x, x') = L exp( -x:tx )·ll'J exp( -x:Jx ). ( 46) 
>. 

Then the system of integral equations of the inverse problern is reduced to 
a system of algebraic equations. By employing the results of (Plekhanov, 
Suzko, Zakhariev (1982), Zakhariev and Suzko (1990)), the expressions for 
the potential and solution matrices can be written in the explicit form 

V;j(x) = 2 ddx I:exp(-x;i'xhi pv->.1(xhJ exp(-x:Jx), (47) 
VA 

where 

By diagonalizing the potential matrix with account of 
u- 1(x)V'(x)U(x) = E(x), we get searched scalar E(x) and vector potentials 
A(x) by using formula (9), (12). 

To reconstruct the two-dimensional potential V(x, y) at the second step 
from the spectral data {Ei ( x), !'[( x)}, which are functions of the variable x, 
we make use ofthe parametric inverse problern (19)- (21), in which V(x: y) 
and 'lj;; (x; y) are reconstructed for the parametric equation (2) at each fixed 
value of x. The technique of Bargmann potentials for the parametric inverse 
problern makes it possible to find explicitly the solutions 1/Ji(x, y) and the 
potential V(x, y) in the analytic form within a consistent approach. Figures 
6 - 7 show examples of the consistent analytic solution of the full problern 
for a potentials that are transparent in both variables. 

In the case of single bound state (5), we arrive at one of the generalized 
Eckart potentials 

(49) 

This expression can be recast into the simpler form well known in soliton 
theory 

(50) 

with the aid of the substitution 

(51) 
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The Jost solutions on the trajectory k = i";(x) and at arbitrary values of k 
are, respectively, given by 

!( . ( ) ) exp(-";(x)y) 
~";X ,y = ' 

1 + exp[-2";(x)(y- Yo (x)] 
(52) 

f±(x;k,y) = 

±.k {I exp[-2";(x)(y- Yo(x)] } exp z y - . 
( ) (1 + exp[-2";(x)(y- y0 (x )])(";(x) =f ik) 

(53) 

The explicit expression for the normalized wave function '1/J(x, y) correspond­
ing to the term f(x) = -";2 (x) for the potential (50) has the form 

'1/J V*f72 
(x,y) = cosh[";(x)(y-y0 (x)]" (54) 

It can be shown easily that the potential is related to the normalized wave 
function by the equation 

(55) 

Note that y 0 (x) in equations (50), (52) - (55) is always related to the nor­
malization function 12 ( x) by equation (51). If the normalization function is 
chosen in accordance with ( 41), 

we have y0 (x) = 0 Vx, which corresponds to the potential that is not only 
transparent but also symmetric in y. It is no surprising because it can be 
seen from (50), for y0 (x) = 0, the potential is symmetric with y = 0. If the 
behaviour of the energy curve f ( x) corresponds to the potential V ( x) = f ( x), 

2";2 

f(x) =- cosh2 (";x)' (56) 

which appears in equation (5) and which is symmetric and transparent in x 
(Fig.6), arising under the condition 12 = 2"; and X 0 = 0, the relation (50) 
leads to a transparent two-dimensional potential that is symmetric in both 
variables (Fig.6a) and possesses one bound state E = -";2 • The relations 
(54) and (53) yield the two-dimensional normalized function of the bound 
state '1/J(x; y) (Fig.6b) corresponding to the potential curve (56), and also the 
two-dimensional wave functions f± ( x; k, y) of the continuous spectrum for 
the parametric problem. 

Now we will demonstrate a more complicated example of the consistent 
analytic solution ofthe full problern for the potential that is again transparent 
in both variables x and y but possesses two bound states in contrast with one 
state of the previous case. Both problems are solved by using the Marchenko 
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approach adapted to the two-channel system of equations and the parametric 
Schrödinger equation. We take the values E 1 = -0.5 and E2 = -1 for the 
bound-state energies and 'Yf = 2, ~~ = 2, 1i = 0.5 and ')'j = 0.25 for their 
normalization factors { 1]}. For these values of parameters we found the 
reflectionless potential matrix whose elements V{1 (x ), V{2 (x), V{2 (x) = V~1 (x) 
and V~2 (x) are represented graphically in Fig.7a. The potential curves E1(x) 
and E2(x) (Fig.7b) are found by solving the algebraic problern for eigenvalues 

The nonadiabatic connection, accomplished by the matrix element of the 
effective vector potential A 12 = -A21 is shown in Fig.7c. To reconstruct the 
two-dimensional potential V(x, y) at the second step we use the parametric 
inverse problern (41)-(45), in which V(x; y) and basis wave functions 1/Ji(x, y) 
are defined from the spectral data {Ei ( x), 1l ( x)} at each fixed value of x. 
The potential V(x, y), that is transparent and symmetric in y, is determined 
only by the potential curves Ei ( x) because of in this case the normalization 
functions 'Y[(x) are expressed in terms of the level-energy values (41). The 
two-dimensional potential V(x, y) and the corresponding normalized wave 
functions 1/J1,2(x, y) ofthe self-energy curves E12(x) are presented in Figs.(7d) 
- (7e,f), respectively. The potential symmetric and transparent in y has the 
structure: the principal peak and several weak rapidly diminishing peaks. In 
more detail, a number of examples were considered in (5, 6). 

7 Conclusions 

On the basis of the inverse scattering problern in the adiabatic representa­
tion, a wide dass of exactly solvable two-dimensional models is constructed 
by the generalized method of Bargmann potentials for a parametric family 
of inverse problems and for systems of equations with covariant derivatives. 
Exactly solvable models with prescribed spectral data are built on the basis 
of the parametric inverse problern and in a consistent formulation of the two 
inverse problems to which the initial problern is reduced. This technique is 
tested by applying it to a number of specific examples on the ba.sis of the 
parametric inverse problern on the entire line and on the half-line. In par­
ticular, two-dimensional potentials are constructed with one and two energy 
Ievel curves and transparent potentials are presented that are symmetric and 
nonsymmetric in one or both spatial variables. 
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Fig.l. (A) Potential V(x, y) corresponding to S(x; k) with two pole curves in the 
upper k half-plane, (B) the normalized eigenfunction 1/J(x; y) at k = -i"(x), the 
upper curve is the energy- level curve [ ( x) = - "2 ( x) 
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Fig. 2. (A) Potential V(x , y) with S(x; k) with 4 pole curves in the upper k 
half- plane, (B,C) the normalized eigenfunctions l/J1,2(x; y) at k = -i~~:t , 2 (x ) , the 
energy- level curves f1 ,2 ( x) = -~~:~ ,2 ( x) are shown in the upper figure. 
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Fig. 3. Potentials V(x(t), y), transparent and symmetrical in y, calculated for dif­
ferent values of wt: (a) wt = 0, (b) wt = rr/6, (c) wt = rr/3, (d) wt = rr/2, (f) 
wt = rr. To achieve a clearer presentation, the potential is inverted. 
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Fig-4. Eigenfundions <P 1(x(t),y) at (a) wt = 0, (b) wt = rr/6, (c) wt = rr/3, 
(d)wt=rr/2, (f)wt=rr . 
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Fig.5. Eigenfunctions <P2(x(t),y) at (a) wt = 0, (b) wt = rr/6, (c) wt = rr/3, 
(d) wt = 1rjZ, (f) wt = 1r. 
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Fig. 6. Two-dimensional potential V(x; y) (A) that is reflectionless and symmetric 
in both coordinate variables x and y. (B) Eigenfunction t/J(x; y) at k = -i,.(x). 
Potential curve E(x) corresponds to one-dimensional potential that is transparent 
and symmetric in x and which possess a bound state at E = -1. 
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Fig. 7. (a-c) Bargmann potential matrices V'(x) (a) that is reflectionless in x. 
The energy-level curves (b) t\(x) and f2(x) and the matrix element A12 (x) of the 
induced vector potential ( c) 
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e 

Fig. 8. (continued Fig.7d-f.) Two-dimensional potential V(x; y) (d) that is reflec­
tionless in both coordinate variables and symmetric in y. Eigentunetions 1/;1 (x; y) 

and 1/J2(x;y) (e,f) correspond to the energy-level curves shown in Fig.7b 
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Abstract. The generalized technique of Bargmannpotentials is applied for the re­
construction of time-dependent and time-independent two-dimensional potentials 
and corresponding solutions in a closed analytic form on the basis of the inverse 
scattering problern in the adiabatic representation. Matrix elements of the induced 
gauge potentials can be constructed and studied in terms of obtained exact so­
lutions. The approach suggested permits investigation of the dynamical quantum 
transition amplitudes for spectral data with a prescribed dependence on parametric 
coordinate variables. 

1 Introduction 

The problern of adiabatically driven quantum systems was posed by Born and 
Oppenheimer (Born and Oppenheimer(1927)) and Born and Fock (Born and 
Fock(1928)). Then it has been intensely studied in many works (for references, 
see Solov'ev(l989), Kvitsinsky and Putterman (1990)) by means of direct 
methods. We suggest investigation of this problern by the inverse scattering 
method. The main advantage of the inverse scattering problern is that it 
permits one to construct a wide dass of Hamiltonia.ns for which solutions in 
a dosed analytical form can be found. In our view, the use of exactly solvable 
models offers good prospects for investigations of many real quantum systems 
with several degrees offreedom and, in particular, ofnonadiabatic transitions. 

An algebraic procedure of solution of the time-independent problern with 
two degrees of freedom was presented in (Suzko (1993), Suzko (1992), Vinit­
sky and Suzko (1990)) within the inverse scattering problern in the adiabatic 
approach. The method of adiabatic representation a.llows one to take into ac­
count the mutual influence of slowly changing external and rapidly changing 
internal fields. This method has been elaborated on the basis of a consistent 
formulation of both mutually connected problems: the parametric problern 
and the multichannel problern for the system of equations with a covariant 
derivative. Generalization of the Bargmann technique to the parametric fam­
ily of inverse problems allows one to generate a wide dass of exactly solvable 
models, when the functional dependence of scattering data on the external 

** Radiation Physics and Chemistry Problems Institute, Academy of Seiences of 
Belarus, Minsk. 
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coordinate variable is known. As a result, for a given functional dependence 
of spectral characteristics { t'n ( x), 12 (x), S(x, k)} on parametric coordinate 
variables x, potentials V(x, y) and the corresponding solutions of the para­
metric Schrödinger equation in a dosed analytical form can be found. By 
using the analytic basis functions, the matrix of exchange interactions A can 
be calculated with a straightforward procedure, and thereafter, the complete 
solution of the initial problern can be obtained. 

In this paper we suggest to use a wide dass of exactly solvable models of 
the parametric problem for studying the transition amplitudes in a.diabati­
cally driven dynamical systems, so that its Hamiltonians are slowly varying 
functions of time. For description of these dynamical systems the method 
of the adiabatic approximation to quantum mechanics is usually used. The 
transition amplitudes in this approach are essentially defined by the matrix 
elements of exchange interactions. By specifying the functiona.l dependence of 
spectral chara.cteristics on time through the dependence on it of the external 
dynamical variable, the elements A can be computed in terms of the analytic 
basis functions. 

This paper is focused on the dass of transparent potentials that a.re con­
structed with their pertinent solutions of the pa.rametric task a.nd give cor­
responding matrix elements of exchange intera.ction calculated a.t different 
moments of time. 

2 The Adiabatic Approximation and Inverse Problem 

Consider the system evolving according to the Schrödinger equation 

in di!Jf~2 > = H(x(t))lw(t) > 

where the Hamiltonia.n H(x(t)) is a slowly varying function of time. If 
cPn(x(t); y) are solutions to the equation 

H(x(t))I<Pn(x(t); y) >= t'n(x(t))I<Pn(:r(t); y) > 

(1) 

(2) 

and form a complete orthonormal set {I<Pn(x(t), y) >} with elements depend­
ing on x = x(t) parametrically, then W can be given (see, for instance, 4) by 
the expansion 

I!Jf(t, x(t), y) >= L Cn(t)exp( -* t t'n(x(t'))dt') I<Pn(x(t); y) > . (3) 
n Ja 

With account of (2) the system of equations for cn(t) can be written in the 
form 

Cn(t) = LBnm(x(t))exp[-* t(t'n(t') -t'm(t'))dt']cm(t). (4) 
m Ja 
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The matrix elements of exchange interaction 

Bnm(x(t)) =< nJm >= Anm(x) · x(t), Anm(x) =< n(x)J 'Vx Jm(x) > (5) 

are generated by basis functions Jn > of the "instantaneous" Hamiltonian 
(2). Here, we assume that H(x(t)) is real, limited and continuous in t. Then 
for each t the eigenfunctions are real valued and orthonormal 

< tPn(x) J tPm(x) >= dnm \lx. 

So, the nonadiabatic couplings Anm = -Amn in (5) arereal and antisymmet­
ric in n and m. The matrix elements (5) of the induced connection A can be 
computed in terms of the analytic eigenfunctions of equations (2) for a given 
functional dependence of scattering data { fn ( x), /; ( x), S ( x, k)} on the slow 
coordinate variables x(t) (&n(x(t)) = -x:~(x(t))). After that the transition 
amplitudes c(t) can be determined from (4). 

In accordance with the general definition of the inverse problem, the para­
metric inverse problern consists of the reconstruction of the potentials and 
corresponding solutions from known spectral data 
{p(x, k), N 2(x), &(x)} or the scattering data {S(x, k), l~(x), &n(x)} paramet­
rically depending on the coordinate variables x. This dependence reflects the 
peculiarity ofthe nonstandard parametric inverse problem. Specifying this de­
pendence and employing the methods of inverse scattering problern (Chadan 
and Sabatier (1977,1989), Zakhariev and Suzko {1990)), we present a wide 
dass of Hamiltonians for which one can construct exactly solvable models 
and, consequently, derive solutions in a closed analytic form. These Hamil­
tonians with generalized Bargmannpotentials (Suzko {1993)) are defined by 
the rational Jost functions 

rr k- ia(x) 
f(x; k) = k + iß(x) (6) 

parametrically depending on the "slow" dynamical variables x through the 
dependence of spectral parameters on them. The parametric Jost function 
(6) has N simple poles on the curves k = ißj (x) and N simple zeros on the 
curves k = iaj(x) defined as functions of the coordinate variable x. In a(x) 
there are not only zeros on the imaginary semiaxis corresponding to bound 
states Rex:j(x) = 0, Imx:j(x) > 0 but also zeros in the lower half-plane with 
Im Vj ( x) < 0 ( the number of simple poles of ßj equals the total number of Kj 
and Vj). In this case the scattering matrix and spectral function assume the 
form 

S( . k) = rr (k + ia(x))(k + iß(x)) ( . k) = rr (k- iß(x))(k + iß(x)) 
x, (k- iß(x))(k- ia(x))' p x, (k + ia(x))(k- ia(x)) · 

(7) 
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For such S(x; k) and p(x; k) the kernels ofintegral equations ofthe parametric 
inverse problern can be represented as sums of terms with a factorized depen­
dence on the fast variable y: Q(x; y, y') = 2::~ B;(x; y) B;(x; y'). When the 
kernel Q is inserted into the base parametric equation of the inverse problern 

oo(y) 

K(x; y, y') + Q(x; y, y') + j K(x; y, y")Q(x; y", y')dy' = 0, (8) 
y(O) 

it is evident that the kernel of the generalized shift K(x; y, y') also becomes 
degenerate: K(x; y, y') = 2::~ K;(x; y)B;(x; y'). As a consequence, the sys­
tem of integral equations of the inverse problern is reduced to the system of 
algebraic equations. Then, the spherically nonsymmetric potential and solu­
tions corresponding to it can be expressed in a closed analytic form in terms 
of the known solutions and spectral characteristics. 

3 Transparent Potentials 

Let us consider quite a simple example of the use of the suggested technique. 
Reflectionless (transparent) potentials along the fast variable descri be the 
one-dimensional inverse problern along the whole axis with the zero-th reflec­
tion coefficient, sref = 0. The transmission coefficient str with the absolute 
value equal to unity is a rational function. Then Q(x; y, y') 

Q(x; y, y') = -21 100 
sref (x; k) exp[ik(y + y')]dk 

7r -00 

m 

+ L ~~ (x) exp[-x;n (x )(y + y')], (9) 
n 

will contain only the contribution of states of the discrete spectrum 

m 

Q(x; y, y') = L ~~(x) exp[-x:n(x)(y + y')]. (10) 
n 

Analogously, for K(x; y, y') we have 

m 

K(x; y, y') = - L ~~ (x )f(ix:n (x ), y) exp[-x:n(x )y']. (11) 
n 

For the Jost solutions at k = ix:n(x) we get, from the main equations of the 
parametric inverse problem, the following system of algebraic equations 

f(ix;n(x), y) = L exp( -Kj(x)y)Pj~1 (x; y) 
j 

with the matrix of coefficients Pjn(x; y) parametrically depending on x: 

(12) 



346 A.A. Suzko and E.P. Velicheva 

p ·( . ) _ 8 . f'~(x) exp[-(Kn(x) + Kj(x))y] 
nJ X, Y - nJ + ( ) ( ) · Kn X + Kj X 

Upon substituting f(iK,n(x), y) into K(x; y, y') (11) and using main relations 
of the inverse problem, we get 

00 

f(x; k, y) = exp(±iky) + j K(x; y, y') exp(±iky')dy' = 
y 

. ~ 1 exp[(-K · (x) ± ik)y] 
exp(±zky) + ~ ~~(x)exp[-Kn(x)y]P,;j (x;y) ·(J) "k . (14) 

. KJ X =f Z 
nJ 

Note, symmetrical transparent potentials for each fixed value of x and appro­
priate wave functions are completely defined by the energy levels (5) since 
the normalized functions can be determined by the energy levels 

2 ( ) • tr ( ) ( ) rr I Km (X) + Kn (X) I f'n X = zResS k /k=iK-n(x) = 2Kn X Km(x) _ Kn(x) . 
mtn 

(15) 

Examples ofthe reconstruction of time-dependent and time-independent two­
dimensional symmetrical potentials and corresponding solutions have been 
considered in (5, 6, 7). In this paper we will present examples of transparent 
but nonsymmetric time-dependent potentials and give matrix elements of ex­
change interaction induced by basis functions ofthe parametric instantaueaus 
Hamiltonian. 

4 Special cases of parametric dependence 
for two-level sytems 

Based on the technique of degenerate kernels, we give a simple example of a 
two-dimensional exactly solvable model with nonsymmetric transparent po­
tentials for a two-level system with a periodical dependence of the dynamical 
variable x on time. Let us define two potential curves in the following way 

&1 = -1/ch2 (x/3), &2 = -(1/ch(x/2) + 0.25) 2 , !'~(x) = 2Kn(x) (16) 

with 
x(t) =8: (1- a cos(wt)), 

where ~ corresponds to the time-independent case. 
The dynamical behaviour of the potentials V(x(t), y) and the pertinent 

normalized eigenfundians 4>n(x(t), y) = ln(x(t))f(iKn(x(t), y)), n = 1, 2 is 
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presented for wt equal to O,rr/4,rr/3,rr/2,rr in Figs.(1a, b, c, d, e)- (3a, b, 
c, d, e), respectively, a = 1. Since their behaviour is mirror-symmetric with 
respect to the line wt E (0, rr), it is not shown in the Figures. It is easy to 
see that the potential and functions change from very simple one-dimensional 
ones for wt = 0, Figs.1a- 3a, to quite complicated two-dimensional potentials 
and functions for all other values of wt "/= 0. A one-dimensional transparent 
potential V(y) with two bound states f1 = -1, f2 = -1.5625 and corre­
sponding wave functions <Pn (y) are immediately obtained from more general 
relations (13) and (12) ofthe parametric task (Suzko (1993)). When wt "/= 0, 
we have two-dimensional potentials and corresponding functions. At wt = rr /2 

and wt = 3rr /2, x(t) coincides with ~ and we have the two-dimensional time­

independent case, V(~,y),I<Pn(~;y) >, shown in Figs.(1d)- (3d), while at 
wt = 2rr, the system comes back to the one-dimensional position with the 
initial states I<Pn(Y) >. 

The behaviuor of the matrix elements of the nonadiabatic coupling 
A12 (x(t)) and B12(x(t)) calculated at different instants by using (5) and 
(12) are pictured in Figs.4b - 4e. Naturally, when wt = 0, Aij and Bij are 
absent, since the dependence on x vanishes. For wt "/= 0 all functions A12(x) = 
-A12 (-x) are antisymmetric and all B12(x) = B12(-x) are symmetric with 
respect to the origin of the coordinates. The behaviour of A is defined by our 
choice of spectral data and of the dependence of x on time (16). It is evident, 
B(x) are symmetric functions since they are obtained as the product of both 
antisymmetric functions: A(x) and :i:(t). Remernher that the matrix elements 
of A12 (x(t)) = -A21(x(t)) and B12(x(t)) = -B21(x(t)) are antisymmtric 
in the index of the state (here 1 and 2). The tendency of changing A as a 
function of wt is the following: the amplitude of changing of A is the larger, 
the smaller the wt. When wt is small, the second pick to the right of the 
origin is comparable with the first pick. With increasing wt, the second pick is 
decreasing. From our point of view this behaviour of the exchange interaction 
A can be explained by the mutual infl.uence of eigenstates. At small values 
of wt the potential curvers are close to each other on a larger interval than 
at large values of wt. It is interesting to note, at wt = rr the matrix elements 
B12 (x) = 0 in spite ofthe adiabatic coupling A12 (x) "/= 0. 

Obviously, another parametric dependence of the spectral characteristics 
can be chosen, and other initial spectral data corresponding not only to the 
one- but also to two- or three-dimensional dependence on the extra coor­
dinate variables can occur. In particular, for the special case of parametric 
variation, the spectral characteristics may be taken in a factorized form as in 
(Kvitsinsky and Putterman (1990)) 

(17) 

where x = x(t) and fn and 4>n(Y) are eigenvalues and eigenfunctions of the 
time-independent task. In the last paper, transition amplitudes were evalu­
ated for the dass of Hamiltonians 
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(18) 

with the restriction that the time-independent Hamiltonian H H(x = 
1) has a purely discrete spectrum. In general, the potentials with spectral 
characteristics satisfying (17) can be only infinite. 

At the sametime our approach permits one to consider a much larger dass 
of Hamiltonians with known discrete and continious parts, whose particular 
case is operators with spectral data in a factorized form like ( 17). In the 
latter case behaviour of potentials and functions is very simple in comparison 
with the previous Figs.(l)- (3). Only infinitely deeper potentials can possess 
energy curves which go to infinity as x -+ oo. 

5 Conclusions 

In condusion, we would like to note that this approach allows one to con­
struct a very wide dass oftwo-dimensional exactly solvable models with time­
rlependent and time-independent potentials. Wehave presented an example 
of the two-dimensional time-rlependent transparent potentials with their ba­
sis functions for two-level systems. We applied these exact wave functions 
for calculating the matrix elements of nonadiabatic couplings determining 
the transition amplitudes. In fact, we can trace the behaviour of the matrix 
elements of exchange interaction (5) at any moment of time and recommend 
our approach for the investigation of the Landau-Zener transitions and level 
crossing problems. 
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Fig.l. Potentials V(x(t),!J) calculated for different values of wt: (a) wt = 0, (b) wt = rr/4, (c) wt = rr/3, (d) wt = rr/2, (e) wt = rr. 
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Fig.2. Eigenfunctions .Pt(x(t),y) at (a) wt = 0, (b) wt = rr/4, (c) wt = rr/3, (d) wt = rr/2, (e) wt = rr. 
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Fig.3. Eigenfundions </>2(x(t),y) at (a) wt = 0, (b} wt = rr/4, (c) wt = rr/3, (d)wt=rr/2, (e)wt=rr. 
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Fig. 4. Matrix elements of exchange interactions A12 ( x) ( the left column) and 

B12(x) (the right column) calculated for different values of wt: (b) wt = rr/4, (c) 

wt = rr/3, (d) wt = rr/2, (e) wt = rr . 
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Abstract. Basedon a realization found previously for the Lie-algebra of the group 
S0(3, 1) a new realization for the S0(3, 2) algebra is presented. The symmetry 
generators are matrix-valued differential operators. The matrix-valued nature of 
the realization is induced by a finite dimensional (non-unitary) representation of 
the noncompact S0(3, 1) subgroup. The Casimir operators can be calculated, and 
the quadratic Casimir operator is shown to yield a three dimensional scattering 
problern with Pöschl-Teller potentials with an LS term, and an optical potential. 
The presence of the optical potential can be traced back to the noncompactnature of 
the S0(3, 1) group giving us the inducing representation. It is also pointed out, that 
the quadratic Casimir can be written in the instructive form of a Laplace-operator 
incorporating so(3, 1)-valued gauge-fields. The role played by gauge transformations 
in deriving new interaction terms is emphasized. 

1 Introduction 

The aim of this paper is to report on the existence of a nonstandard realization 
found for the Lie algebra of the group S0(3, 2). Such realizations are useful in 
algebraic scattering theory where the Casimir operator(s) of the noncompact 
group in question can be related to the Rarnilton operator of some scattering 
problem. Hence finding interesting new coordinate realizations amounts to 
finding interesting scattering potentials for which the scattering states are 
described by group theory. 

In a previous paper [1] a similar construction for the S0(3, 1) case has 
already been investigated by one of us, with the conclusion that such real­
izations result in matrix-valued nonlocal interaction terms of LS-type. An 
interesting so(3) := su(2) gauge structure of such realizations has also been 
observed, i.e. the modified matrix-valued generators could be written as op­
erators containing covariant derivatives by employing so(3) := su(2) gauge­
fields. This result enabled the construction of other solvable scattering po­
tentials by simply gauge transforming the original scattering problem. 

In this paper such ideas will be developed for the larger group 50(3, 2), 
which is more suitable for the description of heavy-ion reactions [2]. In par­
ticular, we will show in section 1 how to generalize the construction of [1] 
for the S0(3, 2) case. In section 2 we calculate the quadratic Casimir in our 
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matrix-valued realization and show that in addition to the L5 terms well­
known from the 50(3, 1) case an optical potential appears in the associated 
scattering problem. The group theoretical characterization of the scattering 
states is also discussed here. The geometrical meaning of our realization is 
clarified in section 3 where we indicate the presence of an so(3, 1) gauge 
structure. Our conclusions are left for section 4. 

2 A matrix-valued realization for S0(3, 2) 

Westart by giving the matrix-valued realization found in [1] for the generators 
of the algebra of the group 50(3, 1), 

J = L + S, M = K + S x R, (2.1) 

L=RxP, K=~(1+R2)P-R(RP). (2.2) 

Notice that the realization in terms of J and M modifies the well-known real­
ization in terms of L and K (related to the angular momentum operator and 
the Runge-Lenz vector after a canonical and a similarity transformation)[1]. 
The operators of (2.1) and (2.2) satisfy the so(3, 1) commutation relations 

[J;, lj] = iE;jdk, [J;, Mj] = iEijkMk, [M;, Mj] = -iE;jdk· (2.3) 

Our task is to find a similar realization for the Lie-algebra of 50(3, 2). In 
this spirit first we try to find the standard 50(3, 2) generators (i.e. the ana­
logues of the operators L and K), and then add matrix-valued modifications 
to them. In order to do it we consider the 50(3, 2) invariant line element 

Introducing the coordinates 

2 
X= 1- R2R, 

we obtain the line element 

1 +R2 

X4 = 1- R2 vl 

2_ 2 1+R 2_ J.l V 4 
( 2)2 

ds - (1 _ R 2 )2 dR - 1 _ R 2 dx - 9J.Lvdy dy , 

where (Yl,Y2,Y3,Y4) = (R1,R2,R3,x), and v1 = cosx, v2 = sinx 

(2.4) 

(2.5) 

Now we can obtain 50(3, 2) generators corresponding to infinitesimal 
transformations preserving the metric (2.5), by writing the usual (50(3, 2) 
generators 
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(2.6a) 

(2.6b) 

(j,l,k=1,2,3), in terms of the Coordinates (Rt, R2, R3, x), 

L = R X p, V = V3, (2.7a) 

(2.7b) 

where K is defined as in equation (2.2). Here v3 = -iofox, hence the opera­

tors of Eqs. (2.7) are first orderdifferential operators. One can calculate the 

quadratic Casimir, and finds 

Moreover by employing the similarity transformation T(R) = ~ one can 

relate our S0(3, 2) Casimir to the S0(3, 1) Casimir C(S0(3, 1)) = L 2 - K 2 

as follows 

T- 1C(S0(3, 2))T = C(S0(3, 1)) + (V 2 - ~) ( ~ ~ ~~) 2 5 
4 

(2.9) 

By choosing scattering states for which the eigenvalue of the operator V (the 
potential strength parameter in [2]) is ~ the 50(3, 2) Casimir describes all 
the scattering phenomena obtained for the S0(3, 1) Casimir. (E.g. Coulomb 

scattering after a canonical transformation. See equation (54) of [3].) In this 

way we managed to clarify the geometrical meaning of the S0(3, 2) generators 

and to substantially simplify the analysis given in [2]. Moreover, wehavealso 

found a new (2.7) form for the generators of the S0(3, 2) algebra. 

Looking at this S0(3, 2) realization one can see that a Straightforward 

way to modify it is to replace the S0(3, 1) generators (L, K) in (2.7) by the 

modified ones (J, M) of (2.1), and to add possible further modifications to 

them. The commutation relations that are to be satisfied are 

[V, Bn] = iVn, [V, 'Dn] = -ißn, (2.10b) 
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(2.10c) 

Wehave found the following set ofmodified 80(3, 2) generators satisfying 
the aforementioned commutation relations 

J = L + s, V= V3, (2.1la) 

2 
B = v1 M - v2 1 + R2 R( V3 - TR) - v2 T, (2.11b) 

2 
1J = v2M + v1 1 + R2 R( v3 - TR) + v1 T, (2.11c) 

where M is defined as in (2.2), and the matrices S and T form a finite Ci­
mensional irreducible representation ofthe so(3, 1) algebra. Notice that since 
the algebra so(3, 1) is noncompact these representations are nonhermitian. 
In this paper we employ the simplest choice 

8 . = ( ~O"j 
J- 0 1~.)' 2 J 

~lTj) 
0 . (2.12) 

We close this section with the important observation that our modified 
so(3, 2) generators are induced by a nonhermitian matrix representation of 
the subalgebra so(3, 1), unlike in [1] where the modified so(3, 1) generators 
are induced by a hermitian matrix representation of the subalgebra so(3). 
In the language of induced representations of groups it amounts to saying 
that the basic difference is the fact that the inducing subgroup 80(3, 1) is 
noncompact for the 80(3, 2) case whereas it was compact (80(3)) for the 
80(3, 1) case. 

3 Calculation of the quadratic Casimir operator 

In this section we calculate the quadratic Casimir operator for our new (2.11) 
realization. We have to calculate 

C(80(3, 2)) = J2 + V2 - 8 2 -1J2 . (3.1) 

Straightforward calculation shows that 

r- 1 (R)C(80(3, 2))T(R) = 

( 1 - R2 ) 2 
2 1 - R2 3 

C(80(3,1))+ 1+R2 V -4(1+R2 ) 2 (RT)V-4, (3.2) 

where the similaritytransformation is the same as in Eq.(2.9), and C(80(3, 1)) 
= J 2 - M 2 . Employing a coordinate transformation 
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r 
R(r) = coth 2, (3.3) 

and further similarity transformations [1] [2] with the choice (2.12) we get, 

r- 1(R)C(S0(3, 2))T(R) = 

C(S0(3, 1)) + 4 + ivsin~r ( 0 
cosh r cosh r O"ll 

O"ll)- ~ 
0 4' (3.4) 

Here n is defined as R = R(r)n, v is the eigenvalue (the potential strength) 
[2] of the operator V, and 

82 2 8 L2 M 3 
C(S0(3, 1)) = ar2 +; ar- sinh2r- 2sinh2 !:.- 4· (3.5) 

2 

Moreover, the operator M is defined as [1] 

M=O"n+l. (3.6) 

From the form of Eqs.(3.4) and (3.5) one can see that it is of the form of a 
scattering Hamiltonian with a nonhermitian matrix-valued interaction term. 

In order to characterize the scattering states algebraicaHy one has to recaH 
that S0(3, 2) is a group of rank two. This means that two numbers are 
needed for the labeHing of its irreducible representations. These numbers are 
associated with the eigenvalues of the two Casimir operators characterizing 
S0(3, 2). One of them is of course (3.1), and the other is (see [3] for the 
details) 

C'(S0(3,2)) = (JV +B X D -D X B) 2 - (BJ)2 - (DJ) 2 . (3.7) 

Let us denote the pair labeHing the irrep as (w, >.). For the labeHing of basis 
vectors within the irrep, we choose extra labels provided by the eigenvalues 
of other operators commuting among themselves and the Casimir operators. 
(RecaH also that now our differential operators are matrix-valued.) Forthis 
purpose we choose the operators J2 , h and V, hence scattering states can 
be labelled as Iw, >.; j, rn, v, J.l) J.l = 1, 2, 3, 4 where the equations [4] 

Ci'v(S0(3, 2)) Iw, >.; j, rn, v, v) = (w(w + 3) + >.(>. + 1)) Iw, >.; j, rn, v, J.l), (3.8a) 

C~v(S0(3, 2))1w, >.; j, rn, v, v) = (w+1)(w+2)>.(>.+ 1)) Iw, >.; j, rn, v, J.l), (3.8b) 

J 2 1w, >.; j, rn, v, J.l) = j(j + 1)lw, >.; j, rn, v, J.l), (3.8c) 

h\w,>.;j,rn,v,J.l) = rnlw,>.;j,m,v), (3.8d) 
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Vlw,-X;j,m,v,J.-l) = vlw,-X;j,m,v,J.-l) (3.8e) 

hold. The scattering representations has to be related to the series labelled 
as [5] 

3 "k w = -- + z 
2 ' 

k E C, (3.9) 

with the important distinction that the group label k related to the scattering 
energy must be chosen complex in order to account for the appearance of a 
complex potential [6]. In order to fix the label A, one has to investigate the 
properties of the other Casimir operator. The important property we will use 
is the relation [3] 

C'(S0(3,2)) = ~~ + ~C(S0(3,2). 
From this relation and equations (3.8a,b) it follows that 

1 
-X= 2· 

Now we write the four component wave function in the form [7] 

where Y~<,m(n) are the spinor harmonics and 

x: = ± (j + ~) = { l + 1, for ~ = l + t, 
2 -l, for J = l - 2 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Using the action [1],[7] of the operators M and un on the spinor harmonics 

MY~<,m(n) = -x:Y~<,m(n), (3.14) 

unY~<,m(n) = -Y~<,m(n), (3.15) 

we end up with the following form for the Schrödinger equation 

(3.16) 

with a, ß = 1, 2 and the interaction matrix is 

( 
.!Q±.!l _ " _ v2 

V, = sinh 2 r 2sinh 2 ~ cosh 2 r 
aß - · sinh r 

-zv cosh 2 r 

-iv sinhr ) 
cosh2r 

!l!_ill -"-· - - _v_2- . 
sinh 2 r + 2sinh 2 .!:. cosh2 r 2 

(3.17) 
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We have few comments concerning this interaction termo After recalling 

that L2 = M(M -1) [1] the term !f~~~; =t= 2sin~2~ can be written in the form 

:s\:~H - :s1:~H 0 According to [1] and [8) one can show that these potentials 
2 2 

are supersymmetry partners of each othero Moreover, one can easily see that 

these potentials are arising from the Casimir operator C(S0(3, 1)) of the 

S0(3, 1) subgroupo The modification in the interaction term coming from 

the group S0(3, 2) is of the form 

( 
v2 iv sinhr ) 

V, ß (S0(3 2)) ::: _ cosh 2 r cosh 2 r 
a ' o smhr v 2 0 

ZV cosh 2 r cosh 2 r 

(3018) 

Notice that this modification is antihermitian, accordingly the eigenvalue k2 

is complexo The presence of such an optical potential can be traced back to 

the fact that the inducing representation of S0(3, 1) is a finite dimensional 

irreducible but nonunitary representationo It should not come as a surprise 

since S0(3, 1) is a noncompact group, hence it has no finite dimensional 

unitary irreducible representationso 

4 The S0(3, 1) gauge structure of the quadratic 

Casimir operator 

In section 20 we indicated that the quadratic Casimir C(S0(3, 2)) can be 

written as the Laplace-Beltrami operator for an appropriately chosen metrico 

(See Eqso (205) and (208)0) Basedon this result it is an interesting question 

whether it is possible to identify a similar structure for the modified Casimir 

C(S0(3, 2))0 Indeed one can prove that a formula similar to (208) is true for 

C(S0(3, 2))0 1t is 

( 401) 

where 

A = ( Ai ) = _2 ( ( S x R ); ) 
ll A4 R2 - 1 TR 0 

(402) 

It can be shown [3) that the so(3, 1)-valued vector fields are S0(3, 2) sym­

metric gauge-fieldso This means that under the infinitesimal coordinate trans­

formations leaving invariant the line element (205) All transforms as a vector 

field up to infinitesimal S0(3, 1) gauge transformationso (See also [9] and [10) 

in this respecto) 
This result has important consequences concerning algebraic scattering 

theoryo Namely, it follows that the modified generat.ors J, V, ß, V are gauge 

covariant in the sense t.hat if we make a gauge transformation 
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they transform as 

(J, V,B,V) ~-tUt(J, V,B,V)Uo ( 4.4) 

Hence new realizations for S0(3, 2) can be found by gauge transformationso 
From such new realizations one can derive new interaction terms by trans­
forming the quadratic Casimir as 

C(S0(3, 1)) 1--t utC(S0(3, 1))Uo (405) 

In this spirit in [1] for the group S0(3, 1) it was shown that the SUSY partner 
potentials mentioned in section 3 can be regarded as potentials arising from 
two different Casimir operators related by a suitable SU(2) gauge transfor­
mationo The interrelation between SUSY transformations and gauge trans­
formations is a result which deserves further elaborationo 

5 Concl usions 

In this paper we introduced a new matrix-valued realization for the group 
S0(3, 2) 0 By calculating the Casimir operators we derived an interaction term 
compatible with the S0(3, 2) symmetryo This interaction term is matrix­
valued, containing LS terms and an optical potential. The interesting gauge 
structure of the quadratic Casimir operator was also demonstrated, and the 
role of gauge transformations for deriving new interaction terms was empha­
sizedo 

However, important issues are left tobe clarifiedo Firstly, we did not yet 
manage to calculate the scattering matrix for the interaction term (3018)0 It 
is true that the form of the S-matrix for S0(3, 2) is fixed by group theory [5], 
however we have to choose the multichannel formalism developed by Alhassid 
and Iachello [11]0 Using the asymptotical behavior of our modified generators 
one should be able to extract matrix-valued recursion relations for the Jost 
functions, hence the S-matrix can in principle be foundo Secondly, we did not 
considered here the important possibility of obtaining nonlocal potentials by 
simply using a canonical transformation P 1--t - R, R 1--t P in the quadratic 
Casimir (302)0 For the S0(3, 1) case this program was carried through in [1]0 
Since S0(3, 1) is a subgroup of S0(3, 2) we expect these results to recover 
the ones known from [1] with the choice v = Üo Such questions can hopefully 
be answered in future workso 
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Abstract. Applying the techniques of supersymmetric quantum mechanics we de­
termine closed algebraic expressions for potentials that are phase-equivalent with 
the generalized Pöschl-Teller potential. Among the examples we discuss the elim­
ination of any single bound state, adding a single bound state at specific energies 
and eliminating the first few bound states. In our work we applied the abstract 
mathematical formalism developed recently for the modification of the spectrum of 
potentials without changing the phase shifts, and adapted it to the case of the gen­
eralized Pöschl-Teller potential. We discuss the importance of shape invariance in 
these procedures and comment on the possibility of deriving similar closed formulas 
for various other potentials. 

1 Introduction 

Since its introduction fifteen years ago supersymmetric quantum mechan­
ics (SUSYQM) has evolved into a highly sophisticated method of handling 
isospectral quantum mechanical systems. Its early applications concerned 
mainly single transformations by which the ground state of a potential could 
be removed or a new ground state could be introduced, depending on the 
solution of the Schrödinger equation used in the process. It was noticed that 
these manipulations also change the r- 2-like singularity of the potentials 
and modify the phase shifts in a characteristic way (Sukumar 1985). Later 
it was shown that by using pairs of such transformations one can construct 
potentials that Iead to the same phase shifts as the original potential de­
spite the different number of bound states the two potentials support, and 
this result was interpreted (Baye 1987) in terms of the generalized Levinson 
theorem (Swan 1963). The relation of SUSYQM to other methods of analyz­
ing isospectral potentials, such as the inverse scattering theory has also been 
discussed (Sukumar 1985; Baye 1987, 1994). 

More recently the formalism of generating phase-equivalent potentials has 
been developed to a stage where in principle arbitrary modifications of the 
energy spectrum are possible (Ancarani and Baye 1992; Baye 1993; Baye and 
Sparenberg 1994). The final potential and the wavefunctions are expressed 
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in terms of compact formulas depending on integrals and determina.nts com­
posed of physical and unphysical solutions of the Schrödinger equation. These 
expressions can be evaluated by numerical techniques in general. 

The generality and compactness of the formulas also raises the question 
whether it is possible to find examples where the whole procedure can be per­
formed in an analytica.l way, i.e. whether there are cases where the resulting 
potential is obta.ined in a closed algebra.ic expression. Such investigations are 
also motivated by the renewed interest in exactly solvable quantum mechan­
ical problems raised also partly by SUSYQM (see, for example, Leva.i (1994) 
and references). Efforts in this direction include the phase-equivalent removal 
of the ground state of the Coulomb (Amado 1988), Morse and Hulthen 
(Talukdar et a.l. 1992) potentials, as well as other transformations of the 
Coulomb potential (Khare and Sukhatme 1989; Ancarani and Baye 1992). 
Apart from their aesthetic value, the importance of fully analytical transfor­
mations lies in the fact tha.t exact results can be obtained even in critical 
conditions when the numerical techniques might not be safely controlled. 
Handling complex potentials can raise such problems, for example (Baye et 
al. 1996a, 1996b). 

In Sect. 2 we briefty review the basic (single and combined) transfor­
ma.tions used in SUSYQM. In Sect. 3 these techniques are then applied to 
the generalized Pöschl-Teller potential ( G PT) a.nd analytical transformations 
are formulated for removing or adding abound state in the GPT spectrum, 
as well as for removing the two lowest bound states. Finally, in Sect. 4 we 
summarize the results and discuss the possibility of applying similar trans­
formations to other types of potentials. 

2 The Basic Transformations of SUSYQM 

Let us consider the Schrödinger equation (with 1i2 /2p = 1) 

Hocpo(k,r) = (- ::2 + Vo(r)) cpo(k,r) = k2cpo(k,r) (1) 

a.nd the factorization of the corresponding Hamiltonian 

Ho = At A0 + Eo , (2) 

where the factorization energy E0 = k6 does not exceed the ground-state 
energy E~O), and 

A~ = ±~ + cp~(ko, r) . 
dr cpo(ko, r) 

(3) 

Due to E 0 :::; E~o) the solutions are nodeless. The supersymmetric partner of 
Ho is defined as 

__ + _ d (cp~(ko,r)) 
Hl-A0 A0 +Eo-Ho-2dr cpo(ko,r). (4) 
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The properties of Vo ( 1·) and V1 ( r) are connected in a characteristic way de­
termined by the nature of solution <po, as shown in Table 1 (Ancarani and 
Baye 1992). 

Table 1. Types of solutions and the corresponding SUSY transformations. 

Solution t.po t/;~0) l/Jo xo fo 

Fact. energy Eo E(O) 
0 Eo < E~o) Eo < Ea0l Eo < Ea0l 

limr-+O'PO r"+1 r-" r"+1 r-" 

limr-+oo'PO exp(-k~0)r) exp(kor) exp(kor) exp(-kor) 

Transformation Tt (TI) T:: (T2) ~ (T3) '4 (T4) 
( old notation) 

Spectrum supresses g.s. adds new g.s none none 

modification (v > 0 only) (v > 0 only) 

Singularity mod. 2(v + l)r-2 -2vr-2 2(v + l)r-2 -2vr-2 

Phase shift mod. tan-1 (k/ka0l) - tan-1 (k/ko) - tan-1 (k/ko) tan-1 (k/ko) 

Further potentials can be derived by combining these single SUSY trans­
formations. In particular, three pairs of such transformations can be employed 
to construct potentials V2(r) phase-equivalent with Vo(r): 

{5) 

It was shown (Baye 1993; Baye and Sparenberg 1994) that the cases corre­
spond to the following choices of ß in (5): 

{ 
-1, Eo physical for Ho; T~Tt; supresses state 

ß = a, Ea nonphysical for Ho; T::T~; adds new state 

1 ~"'' E0 physical for H 0 ; T::Tt; no change 
(6) 

It was also noticed (Baye 1993) that the "no-node condition" for 'Po is not 
necessary when pairs of SUSY transformations are applied. The iteration of 
such dual transformations is also possible (Baye 1993; Baye and Sparenberg 
1994). 

The elementary transformations can also be iterated (Sparenberg and 
Baye 1995), in which case the new potential (which is not phase-equivalent 
with V0 (r)) takes the form 



366 Geza Levai, Daniel Baye, Jean-Marc Sparenberg 

3 Phase-Equivalent Partners of the Generalized 
Pöschl-Teller Potential 

Consider the Schrödinger equation 

(- d~2 + V(r)) 1/; = Etf; 

with the generalized Pöschl-Teller (GPT) potential 

V( ) __ s(s + 1) >.(>.- 1) 
r - 2 + 2 ' cosh r sinh r 

(8) 

(9) 

where we assume that s can be complex. We note that although only the s­
wave solutions of this potential can be obtained analytically, its second term 
resembles the centrifugal term, with l = ,\ - 1 in many respects. 

Setting E = k 2 the two independent solutions can be expressed in terms 
of hypergeometric functions as 

() (sinhr)>. F ( 1 ( , "k) 1 ( , "k)·, 1. . h2 ) ( O) 
F1 r ~ ( h ) 2 1 2 -s +"-I , 2 -s +"+I , "+ 2 ,- sm r 1 cos r • 

and 

F() (sinhr) 1->. F( 1 ( , "k) 1 ( , "k) , 3 . 2) 
2 r ~ ( h )• 2 1 2 1-s-A-I •2 1-s-A+I ;-"+ 2 ;-smh r 

cos r 
(11) 

We assume that ,\ ~ 1 holds, therefore F1 (r) is regular, while F2 (r) is irregular 
in the origin. (The ,\ ~ 0 choice would simply exchange the role of the two 
solutions, because they are interrelated via the ,\ H 1 - ,\ transformation 
which leaves potential (9) invariant.) 

Bound states located at 

(12) 

appear if Re( s) > 2n + ,\ holds, and the corresponding bound-state wavefunc­
tions are expressed in terms of F1(r) in (10), which in these cases reduces to 
a form cantairring a Jacobi polynomial: 

) ( )>. ( )2 (s->.-2n >.-!.) ( 2 1/Jn(r)~F1(r ~ sinhr coshr n-spn ' 2 1---2-) 
cosh r 

(13) 

We mention here that normalization factors and other numerical scaling 
factors do not infl.uence the final form of the derived potentials, therefore we 
drop them in the following. 
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3.1 Removal of an Arbitrary Bound State 

The phase-equivalent removal ofthe Nth bound state at EN requires the ap­
plication of ( 5) with ß = -1 and r.po ( ko, r) being the corresponding normalized 
bound-state wavefunction 'lj!~N) ( r) (Baye and Sparenberg 1994) 0 According to 
(13) it can be written as 

with 

(N) >. ~ 2 ° s (sinhr)>. 
'1/!0 (r) = (sinh r) L.J Cj (cosh r) J- = ( h ) PN(cosh r) cos r s 

j=O 

(-)N-j T(s- >.- N + 1)T(s- j + ~)NN 
Cj = j!(N-j)!T(s->.-N-j+1)T(s-N+~) 

(14) 

(15) 

Since the wavefunctions are normalized to unity the integration from r to oo 
can be rewritten to one from 0 to r, and the integral can be evaluated by 
(37): 

where 

L2N dm(cosh r) 2m 3 o 2 ) GN(r) = 2F1(>.- s + m + 1, 1; >.+ 2; -smh 1' 2>. + 1 m=O 

with 

min(m,N) 

dm = L CjCm-j 

j=max(O,m-N) 

(17) 

(18) 

The resul ting potential w hich has bound states at En m ( 12), except for 
n = N then takes the form 

r 7 ( ) _ Vr ( ) 2 ( (p N ( cosh r)) 2 ) 
2 

v2 r - o r + 2 2 
sinh r cosh r GN(r) 

( >. s p~(cosh r) ) 4(PN(cosh r)) 2 

- sinh2 r- cosh 2 r + cosh r PN(cosh r) GN(r) 
0 (19) 

We note that V2(r) remains unchanged if the factors not depending on j in 
(15) are droppedo 
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3.2 Addition of a New Bound State at Specific Energies 

In order to add a new bound state at energy E = k2 one has to apply (5) 
with t.po(k, r) chosen as an /-type solution of (8) which is irregular at the 
origin (with .A ;::: 2 at least) and exponentially goes to zero asymptotically. 
ß in (6) now remains arbitrary, representing an additional parameter (o:) of 
the resulting potential. The required unphysical solution of the Schrödinger 
equation can be expressed in terms of the linear combination of F1 ( r) and 
F2(r) in Eqs. (10) and (11): 

fo (k, r) ~ ( cosh r)ik (tanh r) 1->. 

x 2Fl(~(s-.A+2-ik),H-s-.A+1-ik);1-ik;1-tanh2 r), (20) 

where Im(k) > 0 has to hold. In order to determine V2(r) the following type 
integrals have to be evaluated: 

where we have introduced the new y = 1- tanh2 r variable together with the 
parameters 

a = ~ ( s - .A + 2 - ik), b= ~(-s-.A+1-ik), c = 1 - ik . (22) 

The evaluation of this integral and its expression in terms of a closed for­
mula can be given only in exceptional cases. It can, however, be transformed 
into further formulas by means of integration by parts. This allows changing 
some of the parameters, which can open the way to further specific cases. 
We present a formula in the Appendix, by which the parameters a or b can 
be increased or decreased by one unit. Direct evaluation of integral (21) is 
possible when either a or b is a non-positive integer -N :=:; 0, because the 
hypergeometric function then reduces to a polynomial form. 

From the b = - N choice we get ik = -s - .A + 1 + 2N, which means that 
a new bound state can be introduced at energies EN = -(s + .A- 1- 2N)2 . 

The Re(ik) < 0 requirement now yields Re(s)- .A > 2N + 1- 2-A, indicating 
that the original potential may have at least N - .A bound states. Due to the 
b = -N choice the nonphysical /-type wavefunction has the form 

,...., (sinh r) 1->. _ (sinh r) 1->. N 2j 
f(r) - ( h ) PN(cosh r) = ( h ) "Cj (cosh r) , (23) cos r• cos r 8 ~ 

J=O 

where 
(-)J r(s- j + .! ) 

c· = 2 
J j!(N- j)!F(s +.A-N- j) 

(24) 

(While reducing (20) to (23) we dropped some unimportant numerical scaling 
factors which cancel out in the final formulas anyway.) The integration can 
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then be carried out using an appropriate form of (37) with x = sinh2 r. 
Setting coefficients dm as in (18) we can define 

GN(r) = I: dm(cosh r)Zm 2F1(s- m + ~' 1; .A + s- m; 1/ cosh2 r) 
m= 0 2(.A+s-m-1) 

+a(sinh r) 2>-- 3 (cosh r) 2s+l , (25) 

which can be used to express integral (21) as 

and the final potential phase-equivalent to (9) as 

( ) _ u ( ) 2 ( (p N ( cosh r)) 2 ) 
2 

V2 r - vo r + 2 
tanh r GN(r) 

( .A - 1 h p}v ( cosh r) ) 4 (p N ( cosh r)) 2 
- + s - cos r :..-'..!.-'-----::-----:-

tanh2 r PN( cosh r) GN(r) 
(27) 

The a = -N choice in (21) leads to ik = s- .A + 2 + 2N. This introduces 
bound states at EN = -(s- .A + 2 + 2N) 2 if Re(ik) < 0 holds. This corre­
sponds to the "continuation" of the GPT spectrum (12) to formally negative 
quantum numbers ( n = - N). However, from Re(ik) = Re( s)- .A + 2 + 2N < 0 
Re(s)- .A < 0 also follows, which means that (contrary to the previous exam­
ple originating from b = - N) the original V0 ( r) potential can not support any 
bound states, therefore the resulting V2 ( r) potential will have only a single 
bound state. We do not present here the explicit form of V2 ( r), only mention 
that in algebraic terms it is generally similar to the form of the potentials 
determined previously in this Subsection. 

3.3 Removal of the First Few Bound States 

Another method of obtaining phase-equivalent partners of the GPT poten­
tial is combining two procedures: first removing N states by iterated single 
transformations ( which, of course, results an intermediate potential V N ( r) not 
phase-equivalent with the original one), and then restoring the phase-shifts 
by another sequence of single transformation. This requires the application 
of (7) with the first N physical bound-state solutions in the Wronskian. Since 
the GPT potential is shape-invariant, this procedure recovers another GPT 
potential (9) with s and .A replaced with s- N and .A + N. In the second step 
the Wronskian ofthex-type unphysical solutions of VN(r) has tobe applied 
in (7). Here it is essential toset the factorization energies equal to the energies 
of the bound states removed in the first step, otherwise phase-equivalence is 
lost. 
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Weillustrate this procedure with the removal of the first two bound states 
of potential (9). Let us assume that 7}!{ = '1j!i(kj, r) (j = 1, 2) are solutions of 
the Schrödinger equation with potential V; ( r) at Ej = kJ. Then the second 
logarithmic derivative of the Wronskian of these two solutions is 

d2 d2 W" (W') 2 
dr2 ln W ( 7}![, 7}!1} = dr2 ln W = W - W , (28) 

where the prime here denotes derivation with respect to r and 

W(7j!J, 7}![) = 7}![ (7}!1)'- (7j!J )'1/!T · (29) 

Based on the Schrödinger equation one also obtains the formulas 

W'(7}!l, 7}!1) = 7}![(7}![)"- (7j!t)"7}![ = ((kt} 2 - (kl} 2)7}![7}![ (30) 

and 
w"(#,7}!r) = ((kl) 2 - (kl} 2)(7j!f(7}!r)' + (7j!f)'7}!r) . (31) 

Using the first two bound-state wavefunctions (13) of (9) in this procedure 
we, indeed, get another GPT potential V2 (r) with parameters s-2 and .\+2. 
The two x-type solutions of this to be applied in the second transformation 
are those in (11) with ik = (s- .\) and (s- _\- 2): 

x~(r) = (sinhr)-'+2(coshr)-s+Z 2Fl(-s+.\+2,2;.\+ ~;-sinh2 r) (32) 

and 

x~(r)=(sinhr)-'+ 2 (coshr)-•+2 zFt(-s+.\+3,1;.\+~;-sinh2 r). (33) 

Let us denote the hypergeometric functions appearing in (32) and (33) with 
F 1 (z) and F 2 (z), respectively, where z = - sinh2 r. Then the final V4 (r) 
potential phase-equi valent wi th V0 ( r) is 

V4(r)=V2(r)+8[1+ 2 1 
2 ( s-.\-21 )

2 

sinh r cosh r Ll(- sinh r) 

( .\+2 s-2 (F2(z))') s-.\-1] 
- sinh2r- cosh2 r - 2 F 2 (z) Ll(-sinh2r) ' 

(34) 

where Ll( z) is formally defined as a logarithmic derivative: 

d (F1 (z)) 
Ll(z) = dz ln F2(z) . (35) 

Similar, but more complicated formulas can be obtained after removing more 
than two of the lowest states. We again stress that this two-step analyti­
cal procedure was made possible by the shape-invariant nature of the GPT 
potential, because this allowed us to get simple closed expressions for the 
unphysical x-type solutions of the intermediate potential. It also has to be 
stressed that this relatively simple process works only if the lowest few states 
are removed, otherwise the same problern of complicated solutions arises. 
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4 Summary and Conclusions 

In this contribution we applied the abstract formalism of Supersymmetrie 
quantum mechanics to the specific case of the generalized Pöschl-Teller po­
tential. In particular we explicitly derived closed algebraic expressions for 
potentials that are phase-equivalent with the GPT potential and the spectra 
of which are obtained from simple manipulations on the GPT spectrum. The 
transformed wavefunctions {not discussed here) ca.n also be determined by 
similar analytic calculations. 

First an arbitrary bound state was removed from the spectrum. This re­
quired the evaluation of definite integrals containing the square of the corre­
sponding wavefunction. The integrand could always be reduced to polynomial 
form in this case. This procedure seems to be applicable to other types of 
potentials as weil: preliminary results suggest that it is generalizable to the 
Ginocchio potential (Ginocchio 1984), which is a member of the Natanzon 
potential dass and contains the Pöschl-Teller potential as a special case. 

In the second example we added a new bound state to the G PT spec­
trum. Here the integra.nd contained hypergeometric functions, and the in­
tegrals could be evaluated only in special cases, which meant that the new 
bound state could be inserted only at specific energies. This procedure re­
quires an r- 2-like attractive singularity of the original potential, therefore it 
is generalizable only to potentials that have this feature. This forbids similar 
treatment of a number of potentials (Morse, Hulthen, Rosen-Morse, etc.). 

In the third case we followed a two-step procedure to eliminate the low­
est states of the GPT potential: the lowest two states were removed in the 
first step and then the phase shifts were restored in the second one. Instead 
of integrals here we had to deal with Wronskians composed of solutions of 
the Schrödinger equation. The shape-invariant nature of the GPT potential 
played an important role in this case, because it guaranteed that we could 
use simple compact formulas for the solutions of the intermediate potential. 
Similar treatment of other radial shape-invariant potentials seems possible. 

These analytical transformations can be used, for example, to test numer­
ical methods in situations that might be problematic in terms of numerical 
techniques. This is the case, for example, for certain types of complex po­
tentials (Baye et al. 1996a, 1996b): our results a.re applicable to complex 
potentials without any major modification. Extending this work to further 
more general potentials could introduce new potential shapes, some of which 
might be close to realistic potentials that can not be treated analytically. 

Appendix 

Using recurrence relations of the hypergeometric functions (Abramowitz and 
Stegun 1970) and integration by parts integral (21) can be written in alter­
native forms by modifying parameters a or b by one unit: 
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(36) 

When the hypergeometric functions do not show up in the integrand I(x) 
can directly be evaluated using a variation of Eq. 3.194.1 due to Gradshteyn 
and Rhyzik (1965): 

[Y xa(1+x)ßdx= - 1-ya+1(1+y)ß+1 2Fl(a+ß+2,1;a+2;-y), (37) Ja a+ 1 

with Re(a) > -1. 
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1 Introduction 

In this lecture the author reviews his results on multidimensional inverse 
scattering. References to the works of other authors can be found in [20]. 
Five topics are briefly discussed: 

- 1) property C with constraints and new type of the uniqueness theorems 
for inverse scattering, 
2) inversion of noisy discrete fixed-energy 3D scattering data and error 
estimates, 
3) variational principles equivalent to inverse scattering problems, 
4) low-frequency data inversion, 
5) asymptotic inverse scattering theory for scattering by small inhomo­
geneities. 

Detailed proofs of the results can be found in the cited references. In this 
paper the emphasis is on the ideas and formulation of the results. 
Theinverse problems we consider are: inverse potential, geophysical and ob­
stacle scattering {!PS, IGS, lOS). We recall the stat.ements ofthese problems. 
Let 

['72 + k2 - q(x)] u = 0 in IR3 , k = const > 0 (1.1) 

exp(ikr) ( 1) u=exp(ika·x)+A(a',a,k) r +o-;:, 

1' := lxl-+ oo,a' := :.,a E 8 2 , 
r 

(1.2) 

w here 5 2 is the unit sphere, a is a gi ven unit vector, A ( a', a, k) is the scatter­
ing amplitude, and q(x) is the potential. We assume that q E Q := { q : q = 7j 
(real-valuedness), q(x) = 0 for lxl ~ a, q E L00 }, k > 0 is fixed. The solution 
to (1.1)-(1.2) is called the scattering solution. We denote Batheball centered 
at the origin with radius a, u0 := exp( ika · x), Mk := { z : z E <C3 , z · z = k2}, 

z · y := ~~=l Zj Yi, M1 := M, Mk is a non-compact algebraic variety in <C3 , 

M nlR3 =52 . 
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The !PS consists of finding q E Q, given A(a', a) := A( a', a, k) for alt a', a E 

5 2 . We fix k = 1 without loss of generality. 
The general method for a study of inverse scattering problems, based on 
property C, was introduced in [4] andin [20] a detailed account of this method 
is given and its many applications are described. (See [4-42]). Later [29-31,38] 

the author introduced the notion of property C with constraints and found 
several applications of this notion in inverse scattering. 
Let us define property C: let Lj be linear partial differential expressions, 

j = 1,2, NJ = NJ(D) := {w: LJ w = 0 in D}. D c IRn, n 2:2, Dis 

a bounded domain; consider subsets of Nj for which the products w1 w2 are 

defined, Wj E Nj; let f E LP(D), p 2: 1, and assume that the equation 

L J(x)w1w2dx = 0 'Vwj E Nj, (1.3) 

implies f( x) = 0. Then we say that the pair { L 1, L~} has property C. 
This definition is rather flexible: we can take f(x) not in LP(D) but in a 
different space, including a space of distributions. 

The definition of property C with constraints is similar, but Wj in (1. 3) runs 

not through alt of Nj but through a subset of Nj of finite codimension. 

For example, Wj may satisfy finitely many linear constraints: 

w here ( w j , hm) is a linear functional on Nj . This functional can be defined 
by a function or distribution with support in D = DU 8D. 
Let lj = \7 2 + k2 - qj(x), qj E Q. 

Theorem 1.1 [29,30,38]. The pair {l1,l2 } has property C with con­
straints. 

Let AJ be the scattering amplitude corresponding to qj, j = 1, 2. From The­
orem 1.1 one derives: 

Theorem 1.2 [32,33]. If q E Q, j = 1, 2, and A 1(a', a)- A2(a', a) is a 
finite rank kernel in L2(S2 ), then q1 = q2. 

Sketch of proof: Let q1 - q2 := p(x), A1- A2 := A. Then one proves 

{20,p.67} that 

-4JTA = j p(x)u1(x, a)u2(x, -a')dx Va', a E 52 • (*) 

If Ais a finiterank kerne], then A = L~=l am(a)bm(a'). Let (vz(a'). bm(a')) 

= 0, 1 :::; m :::; M, v1 (a) be arbitrary. Multiply (*) by v1 (a)v2 (a') and 

integrate over 52 x 5 2 to get 
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The set { wl} is dense in N1 := { w : lt w = 0 in Ba} in L2 (Ba) norm when 
v run thmugh all of L2 (S2 ), while the set {w2 } has codimension:::; M in N2 

(see {33]). By Theorem 1.1, the set {w1w2 } is total in L2 (Ba)· Therefore (**) 
implies p(x) = 0. 

Note that the classical uniqueness theorem for ISP (20] says: if At( ct', o:) = 
A2(o:',o:) Vo:',o: E S 2 and qj E Q, then q1 = q2. Thus, Theorem 2 is a 
far-reaching generalization of the classical uniqueness theorem. Results in 
(29,30,38] cover also the case of lOS for various boundary conditions, and 
contain results on inverse spectral problems and inverse boundary value prob­
lems. Roughly speaking, it is proved in [29,30,38} that one can drop any finite 
number of spectral data or boundary data, and uniqueness of the solutions to 
inverse spectral problems and inverse boundary value problems is still guar­
anteed. 

Assurne that q = q(r), that is, the potential is spherically symmetric, and 
that all the phase shifts with C > C0 vanish, where C0 is an arbitrary large 
fixed integer. Then, as follows from Theorem 1.2, q(r) = 0. 
The IGS problern consists of finding an inhomogeneity v(x) in the velocity 
profile from the surface scattering data. The governing equation is 

[v 2 +k2 +k2v(x)]U=-6(x-y)inlR3 , k= const >0, (1.4) 

U satisfies the radiation condition, v( x) E Q, supp v C IR~, IR~ := { x : 
x3 < 0}. The surface scattering data are the values U(x, y) := U(x, y, k) Vx, 
Vy E P := {x: x3 = 0}, k > 0 is a fixed constant. 

The lOS problern consists of finding an obstacle D and the boundary condi­
tion on {)D := S from the scattering amplitude A(a', a), k > 0 is fixed. The 
scattering solution is defined by equation (1.1) in D' := lR \ D with q(x) = 0, 
equation (1.2), and the boundary condition: 

UN + u(s)u = 0 on S := oD, u(s);::: 0, (1.5) 

where UN is the normal derivative, N is the outer unit normal to S, u(s) E 
C(S). It is proved in (41] for Liapunov's boundaries andin (43] for Lipschitz's 
and even less smooth boundaries (see also (44]) tlmt lOS has at most one 
solution. It is proved in (4,20] that IGS has at most one solution. We do not 
give the strongest results from (20] because of the la.ck of space. For example, 
in !PS and lOS the uniqueness results are proved in (20,41] for the data 
known Vo:' E Sr' and all a E s~ where SJ are arbitrary small open subsets of 
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S 2 , in IGS the surface of data can be given on arbitrary small open subsets 
of P, the assumptions on q(x) and v(x) can be relaxed, etco 
In section 2 we describe an inversion algorithm for !PS and give an error 
estimate for this algorithmo In section 3 we formulate a variational prin­
ciple equivalent to inverse scattering problemso In section 4 we outline a 
low-frequency data inversion in IGSO In section 5 an asymptotic theory for 
scattering by a small inhomogeneity is giveno In section 6 two old open prob­
lems are statedo 

2 Inversion of N oisy Fixed-Energy Discrete 
Scattering Data 

Assurne that A0 ( a', a) is known, sup IAo- Al < o, so that A0 ( a', a) is the 
a 1,aES 2 

noisy scattering amplitude measured at a fixed energy (k = 1) with o > 0 
being the noise Ievel. We do not assume any statistical properties of the 
noiseo At the end, it will be clear that only the values of A0 at a discrete set 
of a', a E S 2 are used in the inversion algorithmo We fix an arbitrary ~ E IR3 

and chose e'' e such that 

e' - e = e, 1 e 1 -+ oo, e', e E M 0 (201) 

This can be clone easily and explicitly: choose the coordinates in which ~ = 
te3, t > 0, Ej are unit orthonorma} basis vectors, 8' = &e3 + y, e = - &e3 + y, 

Y3 = 0, IYI -+ oo, Yf + y~ = y 0 y = 1 - ~ 0 There are infinitely many y that 
satisfy these requirementso Let 

q(~) := { exp( -i~ 0 x)q(x)dxo 
jlR., 

Fix arbitrary a 1 and b suchthat a < a1 < bo Let N(o) := [ 1 l117~1 1 ], where [x] 
is the closest to x integer 0 Define 

AM(a) := (A0 (a', a), Yt(a'))L 2(S2)• 

where Yt ( a) := Ytm ( a) are the orthonormal spherical harmonicso Let 

N(o) 

Ao(B',a) := L A0l{a)Yl(B'), 
l=O 

where the summation is taken over l and also over m, -l ~ m ~ l, Yt(B) is 
naturally defined for all e E M 0 Let ht ( r) be the spherical Hanke! function 

normalized so that he(r) ~ expyr) as r-+ oo, and Iet 

N(o) 

u0 (x, a) := exp(ia 0 x) + L AM(a)Ye(a')ht(r)o 
l=O 
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Define 

Po(v) := exp( -iB · x) 1 ua(x, o:)v(o:)do:- 1, BE M, v E L 2(S2), 
S2 

J-L(o) = exp[-J'N(o)], f' := ln7 > 0, // p 11:=11 p IIP(Bb\Ba,)· Let c > 0 
be a sufficiently large constant, e E IR, and B', B satisfy (2.1). Consider the 
variational problem: 

/BI = sup, sup /BI := t?( o), (2.2) 
II Po (v) II + II V IIL2(S2) exp(/I mB/b )J-L( o) ::; c/B/- 1 . (2.3) 

Lemma 2.1 t?(o) 2:: co (lni~~~"J 1 )2, co = const > 0. 

Let B(o), and v0 (o:) be any approximate solution to (2.2) in the following 
sense: (2.1) and (2.3) hold and /B(o)/2:: ~t?(o). Define 

fj := -41!'1 Aa(B'(o),o:)va(o:,B(o))do:. (2.4) 
S2 

Theorem 2.1 One has 

I A -(c)/ (ln/lno/) 2 

q- q "" ::; c1 /lno/ ' (2.5) 

where Cl can be chosen uniformly for e E IR3 and q Er c Q, where 
r is an arbitrary fixed compact subset of Q. 
Formula (2.4) gives an inversion algorithm and (2.5) is its error estimate. 
Since calculation of (2.4) by a cubature formula requires the knowledge of 
Aa ( o:', o:) at a discrete set only, formula (2.4) gives ·inversion procedure for 
noisy, discrete, fixed-energy, 3-D scattering data. 

3 Variational Principles Equivalent 
to Inverse Scattering Problems 

We give here only the variational principle equivalent to !PS and refer the 
reader to [21,42] where similar principles for IGS and lOS are given. 
The basic idea is to use not only the data fitting, but also the basic equation 
for the scattering solution, namely, 

1 exp(i/x- y/) 
u = u0 - gqudz, g := / / , k = 1. 

ffi.3 41l' X- y 

Consider the variational principle: 

:F(p,f) :=II -47rA(o:',o:)- { exp(-io:'·y).f(y,o:)dy IIP(S2xS2) 
}Ba 

+ II .f(x, o:)- p(x)uo(x, o:) + p(x) 1 g(x, z)f(z, o:)dz IIL2(BaxS2) 
Ba 

(3.1) 

= min (3.2) 
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Theorem 3.1 If A(a', a) is the scattering amplitude corresponding 
to a potential q E Q, then minF(p,!) = 0, where min is taken over 
p E L2(Bq) and f(x, a) E L2(Ba x 52 ); minF(p,!) is attained at the 
pair {q,qu(x,a)} and only at this pair. Here q E Q is the unique po­
tential corresponding to A(a', a) and u(x, a) is thc corresponding scattering 
solution. 

Remark 3.1 Unfortunately we cannot give any stability results for 
the solution to (3.2) with noisy data A0 (a', a) in place of the exact 
data A(a', a) in (3.2). 

4 Inversion of Low-Frequency Surface Scattering Data 

Consider (1.4) and assume that the data U(x, y, k), Vx, y E P, Vk E (0, k0 ) 

are known, where k0 > 0 is an arbitrary small number. The usual integral 
equation equivalent to (1.4) (with the radiation condition) is: 

u = g + k2 r g(x, y, k)v(z)U(z, y, k)dz, 
}Ba 

exp(iklk- yl) 
g ·- ----'--7-'--c'--'-'-

.- 47rlx - Yl . (4.1) 

It is proved in [41] that (4.1) is uniquely solvable for sufficiently small k and 
the following limit exists: 

2. U-g 1 v(x)dz 
f(x, y) := l67r hm -k2 = I II I, 

k-+0 Ba X - Z Z - y 
x, y E P. (4.2) 

The function f(x,y) is known if U(x,y) is known Vx,y E P. Equation (4.2) 
is first kind Fredholm equation for v(z). It is proved in [41] that this equation 
has at most one solution, this solution is found analytically, and necessary 
and sufficient condition for a function f(x, y) tobe representable by the right­
hand side of ( 4.2) are given [20,21 ,41]. Numerical experiments in solving ( 4.2) 
are reported in [20]. The problern is highly ill-posed, but it was possible to 
identify numerically the su pport of v ( x) from noisy discrete surface data. 
A number of other geophysical inverse problems were studied by the above 
methodology (well-to-well exploration, induction Jogging, etc, see [20,21,41]). 
However, in many cases it is desirable to get less information about the 
inhomogeneity v( x), but to get it in a computationally stable and easy (non­
intensive computationally) way. Such a way is discussed in the next section. 

5 Asymptotic Inverse Scattering Theory 
for Small Inhomogeneities 

Consider IGS problern and assume that 
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supp v := D, diam(D) = d, 

c1d3 ~ IDI := meas D ~ c2cP, 
JD lvldx f < c, sup lvl ~ c. (5.1) I D vdxi -

Given U(x, y, k) for x and y running through some subsets of P and for k 
fixed or k running through some finite number of wave numbers, we want to 
find the location of D and get some idea about its geometry and the intensity 
VD := JD vdx. 
In [1-3] more general assumptions are made: '172 is replaced by a second-order 
elliptic operator. Let (U- g)k- 2 := f(x, y). We suppressed k-dependence in 
what follows. Equation ( 4.1) implies 

f(x, y) ~ g(x, z)g(z, y)vD, VD := L vdx (5.2) 

where z is a point in a neighborhood of D. 
Let ~i = (x;, y;) be a data point, §(~;, z) := g(x;, z)g(z, y;), i E J, where I is 
a finite set of indices. By (5.2), f(~) is approximately proportional to g(~, z) 
for some z. Let us estimate z by finding global maximum of the correlation 
coefficient 

(5.3) 

where the summation is over i E J. Define 

zo := L zv(z)dz/vD. (5.4) 

One can prove [1] the following 

Theorem 5.1 Global minimizer z of (5.3) satisfies the following 
equation. 

z = z0 + C(d~) as d-+ 0 (5.5) 

A similar result holds when the exact data U(~;) are replaced by the noisy 
data U(~;) + n;, where n; are independent random variables with zero mean 
value and variance (7 2 ( see [1]). 
If v does not change sign then z belongs to the convex hull of D. If, in 
addition, Dis convex, then z E D. If D is centrally symmetric and connected 
and v( x) = v( -x) in the coordinate system with the origin at the center of 
symmetry, then z = C(d~). 
We can now describe a very simple practical algorithm for localization of the 
small inhomogeneity v(x): calculate r(z) by formula (5.3) and find its global 
minimizer z. The point z determines the position of D with the error C(d~) 
as d-+ 0. If z is found then an estimate of VD is calculated by the formula 

_ Re'L,J(~;)§(~;,z) 
VD := L_ 1§(~;, z)l2 ' (5.6) 

which follows from (5.2). One has 
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Theorem 5.2. 

One can get additional, useful practically, information about v(z) from the 
surface scattering date, in particular, one can estimate the first and second 
moments of v(z). (See [1-2] for details.) 
A similar approach can be used in !PS ([3]). Assuming that 

d2 (k 2 + sup lq(x)l) « 1 and dsup lql « k, 

where d = diam( supp q), supp q := D C rn?, one can give a computationally 
easy and stable method for locating D, finding qD := JD q(x)dx, the intensity 
of the potential, and its first and second moments. 
Let us sketch the method. We have the well-known equations 

A(o:',o:) =- 4~ l exp(-iko:' · x)q(x)u(x,a)dx, (5.7) 

U(x, o:) = exp(ika · x) -l g(x, y, k)q(y)u(y, o:)dy, o:, o:' E 5 2 . (5.8) 

Thus 
-4trA(o:', o:) = 

l q(z)exp[ik(o:-o:')·x]dx-l dxexp(-iko:·x)q(x) l g(x,y,k)qudy. (5.9) 

Let 

xa := l xq(x)dx/qD, Q := sup lql. 
xElR3 

(5.10) 

One can prove that (5.9) implies 

-47!-A( o:', o:) = exp[ik( o:- o:') · xo]qD[1 + C(Kd2)], d-+ 0. (5.11) 

Thus 

4triA(o:', o:)l = lqDI(l + Kd2 ); 0 :S arg[-A(o:', a)] := c(o:', o:) < 21r, (5.12) 

c(o:', o:) = k(o:- o:') · x0 + 2trn(o:', o:) + C(Kd2) (5.13) 

where n(a', a) is an integer. 
Let ß := o:- o:'. If o:, o:' E 52 then lßl :S 2. If ß is given, ß E 1R3 , lßl :S 2, 

and P, a plane containing the origin, is fixed, then one can find uniquely o:, 
o:' E 52 n P, suchthat ß = o:'- o:. Therefore (5.13) can be written as 

c(ß, P) = kß · xo + 2trn(ß, P) + C(Kd2 ), lßl :S 2. (5.14) 

From the second equation (5.12) it follows that c(ß, P) is discontinuous only 
for those ß for which c(ß, P) = 0 or c(ß, P) = 21r - 0. Suppose the origin is 
inside Ba :::) D := supp q(x) and assume that xa E Ba. This will happen, for 

l ·r h · IB lqldx · 1 F · t ·r ( ) d examp e, I t e ratro I Ja I IS not too arge. or ms ance, I q x oes not 
Baqdx 

change sign, then this ratio is 1 and x0 E Ba. Define 6. := 1r(ka)-I and let 

lß2- ßii < 6.. Then lk(ß2- ßi) · xal :S kalß2- ßrl < 1r. Fix any ßi # ß2 
such that lßr - ß2l < 6. Consider the following three possibilities: 
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- 1) -1r + C(x:d2) < c2- c1 < 1r- C(~~:d2 ), where Cj = c(ßj, Pj); then 
(ß2- ßt) · xa = k- 1(c2- cl) + C(~~:k- 1 d2 ); 

- 2) c2-c1 > 1r+C(~~:d2 ), then n2 = n1+1, nj := (ßj, Pj); thus (ß2-ßt)xo = 
k-1[c2- c1- 21r + C(~~:d2 )]; 

- 3) c2 - c1 < -1r - C(~~:d2 ), then n2 - n1 = -1, and (ß2 - ßt)xo = 
k-1[c1- c1 + 21r + C(x:d2)]. 

Let us estimate the point x0 which localizes the support of the potential. 
Let {ßj, Cj} be the data. For all pairs h, h such that lßj1 - ßh I < !:::.., ßh :j:. 
ßj2 , consider the equations 

x · bt = k- 1Pt, 1 :::; l :::; L, bt := ßh - ßh, Pt := eh -eh + 21rs. (5.15) 

Index l numerates the pairs {h,h}, s = 0, 1, or -1 according to which of 
the possibilities 1), 2) or 3) occurs. 
Solve (5.15) for x by solving the system 

B' BX = ·-l B'p, p = C:) , (5.16) 

If the vectors W, ß := a', a, are distributed uniformly on S 2 and ifthere are 

many pairs {ßju ßh}, ßh :j:. ßh, such that lßh - ßh I < !:::.., then one can find 
x from (5 .. 16). 

Theorem 5.3 One has lx- xal = C(kd2 + k- 1Qd2) as d -t 0. 

If x is found, then one estimates the intensity of the potential, QD, by the 
formula 

(5.17) 

As above, one can find the first and second moments of q(x) from the scat­
tering data. 

6 Open Problems 

We mention just two major problems each of which has been open for about 
half a century: 

- 1) Do the data A(a', ao, k) (or A( -a, a, k)) determine q(x) uniquely? 
Here ao E S 2 is fixed, a', a run through all of S 2 and k runs through 
(0, oo). 

- 2) Do the data A(a', ao, ko) determine D uniquely? 

Here ao E S 2 and ko > 0 are fixed, a' runs through an open subset of S2 , 

and D C IR3 is a bounded domain with a Lipschitz (or smooth) boundary on 
which the Dirichlet (or Neumann, or Robin) boundary condition is assumed. 
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