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Preface

Inverse quantum scattering theory has proved to be one of the most fruit-
ful discoveries in physics. It provides model-independent microscopical in-
teractions in quantum physics and supplies fundamental theoretical tools to
solve problems in nonlinear physics. Founded in the 1950s, inverse quantum
scattering theory has originated from the spectral theory of the Schrodinger
equation or, more precisely, the Sturm-Liouville operator. It soon became
the heart of the inverse scattering transform, enabling tremendous technical
applications such as wave propagation, light transmission through optical fi-
bres, and so on. However, its original goal to derive quantum potentials from
observables has been reached only in recent decades by suitable modifications
of the theory. Also, other quantum inversion schemes have been developed.
One of the purposes of this volume is to give an account of this progress.

Algebraic quantum scattering theory is a relatively new topic. It is capa-
ble of deriving scattering phase shifts (S-matrix elements) via specifying a
noncompact dynamical symmetry group characterizing the colliding system.
Those phase shifts can then be inverted into potentials or, alternatively, a
special realization of the group generators can be chosen to get analytically
known (exact) potentials. This is achieved by using a functional relation be-
tween the Casimir operators and the Hamiltonian of the system exhibiting
the underlying symmetry. On the other hand, supersymmetrical quantum
mechanics generates also exactly solvable (analytical) models and its basic
equations can formally be cast into a form which is in correspondence with
those of the quantum inverse scattering theory. Thus these three subjects
turn out to be intimately connected with each other. The other purpose of
this volume is to manifest this connection explicitly.

Distinguished scientists, mathematicians, and physicists from all over the
world, came together at Lake Balaton to discuss current developments and
problems of inverse and algebraic quantum scattering theory including super-
symmetrical quantum mechanics, and to present new contributions in these
beautiful topics of quantum scattering theory. The financial help of the spon-
sors (bme, otka, nefim, omfb, fefa, ictp) greatly contributed to the pleasant
and fruitful atmosphere of the conference. The participants have decided to
meet regularly every three years and to dedicate this volume to the memory
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of the late Professor Harry Fiedeldey whose research work covered almost all
the topics of the conference.

Budapest, April 1997

B. Apagyi
G. Endrédi
P. Lévay



In Memory of Harry Fiedeldey
[1932-1994]

These conference proceedings are dedicated to the memory of Professor Harry
Fiedeldey, an outstanding contributor to the area covered by this conference,
namely inverse and algebraic quantum scattering theory.

Harry Fiedeldey passed away unexpectedly on 16th, September 1994 from a
heart attack. He was born in Indonesia on 17th, December 1932. His elemen-
tary school education was interrupted by World War II and he miraculously
survived several years in a Japanese concentration camp, being held cap-
tive until the end of the war. His schooling “continued” in Holland where he
managed to make up the lost years and then finish his first degree in physics
at Groningen University in 1954. Thereafter he emigrated to South Africa
where he obtained his MSc degree at Pretoria University and his DSc at the
University of Stellenbosch under the supervision of Prof. W. E. Frahn.

His acuteness of mind, his strong motivation, his infectious enthusiasm, and,
most of all, the quality and quantity of his contributions, have made Harry
Fiedeldey a recognized authority in all the fields he has worked in. The cre-
ativeness of his mind and the depth and range of his knowledge was aston-
ishing. His research work covered a wide range of topics in nuclear physics,
few-body physics, and inverse and algebraic quantum scattering theory.

While topics in nuclear and few-body physics were always on Harry Fiedel-
dey’s agenda, the inverse scattering problem was one of his life-long interests
and an area in which he was considered a pioneer. In collaboration with oth-
ers he developed new inversion methods which have been applied to quantum
processes in few-body physics, nuclear physics, atomic physics, and condensed
matter physics. The fixed-energy inversion methods he pioneered with Profes-
sor Reiner Lipperheide (analogous to those for the fixed angular momentum
Bargmann potentials and based on rational or nonrational forms of the scat-
tering function) are perhaps the most successful inverse scattering methods
in nuclear physics. Further examples of his invaluable contributions in the
field are his early work on inversion with separable potentials and later for
more general nonlocal potentials, the role of regularization in inversion and
his investigations of supersymmetry with respect to a generalization of Levin-
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son’s theorem and its consequences for a variety of physical systems such as
the three-quark and a-a systems. Harry Fiedeldey also published several im-
portant papers in algebraic scattering theory and its application to heavy-ion
scattering.

In the field of inverse scattering theory he did some of his most original and
seminal work. Here are but few of the highlights of his contributions in the
field:

— The introduction of the fixed-energy inversion method based on alge-
braic rational and nonrational scattering functions having exactly solv-
able potentials and the corresponding transformations for the solution of
the inverse scattering problem. This allows the application of inversion
methods to realistic situations, which has led to the determination of a
large variety of scattering and optical potentials in atomic and nuclear
physics. Such algebraic methods were later also applied to the investiga-
tion of surface profiles of solid and liquid matter via neutron and x-ray
specular reflection.

— The simultaneous application of inversion methods to two- and three-
body problems, for which a specific transformation was introduced. This
allowed the determination of quark-quark forces from baryon spectra.

— The clarification of the “phase problem” in neutron specular reflection
through a combination of a logarithmic dispersion relation between re-
flectivity and reflection phase with the Darboux inversion scheme.

— Proposals for an experimental method to measure the reflection phase
directly. In one method the phase is determined by the dwell time of the
neutron in the sample, which can be obtained via absorption measure-
ments. In another method, the interaction of the neutron spin with an
external magnetic field is used to determine the reflection phase via the
interference of the reflections from the external magnetic field and from
the scattering profile of the sample.

The untimely death of Harry Fiedeldey at the height of his scientific career
is a great loss to the quantum inverse scattering community. The work of
this exceptional man and his unbounded love for scientific endeavour was,
and will continue to be, a constant source of inspiration to all who had the
privilege of knowing him and learning from him.



List of Participants

R.G. Airapetyan airapetyan@mainl.jinr.dubna.su
Joint Institute for Nuclear Research, LCTA, Dubna, Moscow Region,
Russia, 141980

L.J. Allen lja@physics.unimelb.edu.au
School of Physics, University of Melbourne, Parkville, Victoria 3052, Aus-
tralia

K. Amos amos@higgs.ph.unimelb.edu.au
School of Physics, University of Melbourne, Parkville, Victoria 3052, Aus-
tralia

B. Apagyi apagyi@phy.bme.hu

Technical University of Budapest, Department of Theoretical Physics,
1521 Budapest, Budafoki u. 8.

I. Barna barna@phy.bme . hu
Technical University of Budapest, Department of Theoretical Physics,
1521 Budapest, Budafoki u. 8.

D. Baye dbaye@ulb.ac.be
Universite Libre de Bruxelles, Physique Nucleaire Theorique et Physique
Mathematique, Code Postal 229, Universite Libre de Bruxelles, Campus
Plaine, B 1050 Bruxelles, Belgium

A. Boutet de Monvel anne@mathp7. jussieu. fr
University Paris VII, Laboratory of Mathematical Physics and Geometry,
Mathematics, Tour 45, Boite postale 7012, 2 Place Jussieu, 75252 Paris
Cedex 05

S.G. Cooper S.g.cooper@open.ac.uk
The Open University, UK, Physics Department, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK

J. Cseh csehjOtigris.klte.hu
MTA ATOMKI, Pf. 51. 4010 Debrecen
M. Eberspacher Matthias.Eberspaecher@theo.physik.uni-

giessen.de
Institut fiir Theoretische Physik der Justus-Liebig-Universitit Gieflen,
Germany

G. Endrédi endredi@ns.c3.hu
Computer Center of E6tvos University, ELTE, Budapest, Hungary



X

H.V. von Geramb TI04GER@DSYIBM.DESY.DE
Theoretische Kernphysik, Universitit Hamburg, Luruper Chaussee 149,
D-22761 Hamburg, Germany

P.O. Hess hess@roxanne.nuclecu.unam.mx
Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, C.U.A.P. 70-
543, 04510 Mexico D.F., Mexico

H. Huber huber@apl.kph.tuwien.ac.at
Institut fiir Kernphysik, Technische Universitat Wien, Wiedner Hauptstr.
8-10/142, A-1040 Wien, Austria

L. Jade T04GER@DSYIBM.DESY.DE
Theoretische Kernphysik, Universitdt Hamburg, Luruper Chaussee 149,
D-22761 Hamburg, Germany

S. Jena jena@utkal.ernet.in
Department of Physics, Utkal University, Bhubabeswar-751004, India
F. Korinek korinek@isl.kph.tuwien.ac.at

Institut fiir Kernphysik, Technische Universitdt Wien, Wiedner Haupt-
srasse 8-10/142, A-1040 Vienna, Austria

H. Leeb leeb@isl.kph.tuwien.ac.at
Institut fiir Kernphysik, Technische Universitat Wien, Wiedner Haupt-
strasse 8-10/142, A-1040 Vienna, Austria

G. Lévai levaig@tigris.klte.hu
Institute of Nuclear Research of the Hungarian Academy of Sciences
(ATOMKTI), 4010 Debrecen

P. Lévay levay@phy.bme.hu
Technical University of Budapest, Department of Theoretical Physics,
1521 Budapest, Budafoki u. 8.

B.M. Levitan spivak@Physics.SPA.UMN.EDU
School of Mathematics, University of Minnesota, 206 Church street, Min-
neapolis, MN 55455-0436, USA

R. Lipperheide lipperheide@hmi .de
Hahn-Meitner-Institut, Glienicker StraBe 100, D-14109 Berlin, PO-Box
39 01 28, D14091 Berlin

I. Lovas LOVAS@rmk530.rmki.kfki.hu
University of Lajos Kossuth KLTE Debrecen
V.A. Marchenko marchenko@ilt.kharkov.ua

Institute for Low Temperature, Mathematical Division, 47 Lenin Avenue,
310164 Kharkov, Ukraine

A. Melin melin@maths.lth.se
Department of Mathematics, Lund Institute of Technology, Lund
Z. Papp pz@indigo.atomki.hu

Institute of Nuclear Research of the Hungarian Academy of Sciences
(ATOMKTI), 4010 Debrecen

A.G. Ramm Ramm@math.ksu.edu
Math. Dept. Kansas St. Univ., Manhattan, KS 66506-2602, USA



X1

M. Sander I04GER@DSYIBM.DESY.DE
Theoretische Kernphysik, Universitdt Hamburg, Luruper Chaussee 149,
D-22761 Hamburg, Germany

W. Scheid Werner.Scheid@theo.physik.uni-giessen.de
Institut fiir Theoretische Physik der Justus-Liebig-Universitat GieBen,
Germany

S.A. Sofianos sofiasa@risc3.unisa.ac.za

Univ. of South Africa, Physics Department, Unisa, PO Box 392, Pretoria,
0001, South Africa

J.M. Sparenberg jmspar@ulb.ac.be
Universite Libre de Bruxelles, ULB, CP 229 Plaine, 1050 Bruxelles, Bel-
gium

A. Suzko Suzko@Thsunl.JINR.DUBNA.SU

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear
Research, 141980, Dubna, Moscow Region, Russia

R. de Swiniarski DESWINI@frcpnll.in2p3.fr
Grenoble, Institute of Nuclear Physics

J. Trlifaj trlifaj@karlin.mff.cuni.cz
Institute of Physics, Na Slovance 2, 180 40 Prague 8, Czech Republic

A. Ventura ventura@risc990.bologna.enea.it
Centro Dati Nucleari, ENEA, Bologna, Italy

B.N. Zakhariev Zakharev@tsunl. jinr.dubna.su

Laboratory of the Theoretical Physics, Joint Institute for Nuclear Re-
search, Dubna, 141980, Russia

L. Zufh zuffi@milano.infn.it
Dipartimento di Fisica dell’ Universita and INFN, Milano, Italy



Contents

New Inverse Spectral Problem and Its Application
A.Boutet de Monvel and V.Marchenko . . . . . .. ... ... ... ..

Inverse Problem on the Entire Line and Some Connected
Questions of Spectral Theory
B.M. Levitan . . . . . . . . . . e

Qualitative Physics in Spectral, Scattering
and Decay Control
V.M. Chabanov and B.N. Zakhariev . . . ... ... ... .......

Ambiguities in Inversion Potentials
for Light Nuclear Ion Scattering
K. Amos and M.T. Bennett . . . . . ... ... ... ... .. .....

Coupled-Channel Marchenko Inversion in One Dimension
with Thresholds
S.A. Sofianos, M. Braun, R. Lipperheide, and H. Leeb . . . . . . . ..

One-Dimensional Inversion in Neutron and X-Ray Reflection
R. Lipperheide, G. Reiss, and H. Leeb . . . . . . . ... ... ... ..

Non-standard Information in Optical Model Analyses
H. Leeb, H. Huber, and B. Apagyi . . ... ... ... .........

Numerical Method for Solving the Inverse Problem
of Quantum Scattering Theory
R.G. Airapetyan, I.V. Puzynin, and E.P. Zhidkov . . . . . . . ... ..

The Inverse Scattering Problem for Coupled Channels
with the Modified Newton-Sabatier Method
M. Eberspacher, B. Apagyi, and W. Scheid . . ... ..........

Energy-Dependent Potentials Obtained by IP Inversion
S.G. Cooper and R.S. Mackintosh . . . .. ... ... ... ... ...



X1V

Modeling of Nucleon—Nucleon Potentials, Quantum
Inversion Versus Meson Exchange Pictures
L. Jade, M. Sander, and H.V. von Geramb . . . . .. ... ... ...

Inversion Potentials for Meson—Nucleon
and Meson—Meson Interactions
M. Sander and HV.von Geramb . . . . .. ... ... .........

Fixed-Energy Inversion of Polarisation-Corrected
Electron—Atom Scattering Phase-Shifts

into Effective Potentials

B. Apagyi, P.Lévay, and W. Scheid . ... ... ....... ... ..

Pion Nucleus Interaction from Inverse Scattering Theory
and a Test of Charge Symmetry
S.Jena . . ... e

NN Potentials with Explicit Momentum Dependence
Obtained from Generalized Darboux Transformations
F. Korinek, H. Leeb, M. Braun, and S.A. Sofianos . . . ... ... ..

Unitarity and the Scattering Phase Shifts
for Inversion Studies
H.Huber, D.R. Lun, L.J. Allen, and K. Amos . . . . .. ... .....

Potential Reversal and Reflectionless Impurities
in Periodic Structures
V.M. Chabanov, B.N. Zakhariev, S.A. Sofianos, and M. Braun

The Method of the Weakly Conjugate Operator
A. BoutetdeMonvel and M. Mantoiu. . . . . .. .. ... ... ....

Solutions to the Hierarchy of the Periodic Toda Lattices
L.Trlifaj . .. . . o o e

Spectrum Generating Algebras and Dynamic Symmetries
in Scattering
F.Iachello. . . . . . . . . 0

Algebraic Coupled-Channels Formalism for Heavy Ions
Near the Coulomb Barrier
R. Lichtenthiler Filho, M. Vaccari, A. Ventura, and L. Zuffi . . . . . .



XV

Algebraic Scattering Theory and Light Heavy-Ion Reactions
J.Cseh . . . .. e 273

Geometrical Relation of the SACM
PO.Hess . . . . . o o, 287

Phase-Equivalent Complex Potentials
D. Baye, J.-M. Sparenberg, and G. Lévai . . . . ... ... ...... 295

Exactly Solvable Models
for Two-Dimensional Quantum Systems
AA Suzko . . ... .. e 314

Exactly Solvable Quantum Models for Investigation
of Nonadiabatic Transitions
A.A. Suzko and E.P. Velicheva . . . . e 342

Modified Symmetry Generators for SO(3,2) and Algebraic
Scattering Theory
P. Lévay, B. Apagyi, and W. Scheid . . ... .. ... ... ...... 354

Analytical Results on Generating Phase-Equivalent

Potentials by Supersymmetry: Removal and Addition

of Bound States

G. Lévai, D. Baye, and J.-M. Sparenberg . . . ... ... ....... 363

Multidimensional Inverse Scattering with Fixed-Energy Data
AG Ramm . . .. ... .. e 373

List of Authors



New Inverse Spectral Problem
and Its Application

Anne Boutet de Monvel''? and Vladimir Marchenko?

! Institut de Mathématiques de Jussieu, CNRS UMR 9994,
Laboratoire de Physique mathématique et Géométrie, case 7012,
Université Paris 7 Denis Diderot, 2 place Jussieu, F-75251 Paris Cedex 05
2 B. Verkin Institute for Low temperature Physics,
47, Lenin Avenue, 310164, Kharkov, Ukraine

1

The origin of inverse spectral problems lies in natural science, but the prob-
lems themselves are purely mathematical. At the beginning these problems
attracted attention of mathematicians by their nonstandard physical con-
tents. But we think that today their place in mathematical physics is deter-
mined rather by the unexpected connection between inverse problems and
nonlinear evolution equations which was discovered in 1967. This discov-
ery was made in a famous paper by Gardner, Greene, Kruskal and Miura
(1967). They found that the scattering data of a family H(t) (—oco <t < 00)
(i.e. the reflection coefficients r(k,t) and normalizing coefficients m(ik;, t)) of

Schrodinger operators
2

H(t) = —dd? + u(z,t)
satisfy linear differential equations
= 8ik3r, my = 8i(ik;)*m
if the potentials u(z,t) are rapidly decreasing solutions of the KdV equation
uy = 6uly — Uppr - (1)
This fact allows to solve the Cauchy problem
u(z,0) = ¢(x) (2)

for the KdV equation using inverse scattering problem according to the fol-
lowing scheme:

q(ﬁ) - 7”(](7, 0)) m(ik;, 0)
— r(k,t) = r(k, 003 m(iky, t) = m(ik;, 0)ed*™

— u(z,1).
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The condition of rapid decrease of the initial function ¢(z) is absolutely
necessary for this method to apply, because all the notions of scattering
theory (Jost solutions, reflection coefficients, normalizing coefficients, etc.)
are defined only for operators with the potentials tending to zero when |z| —
0o. We will generalize this method to initial functions ¢(z) which do not
vanish at infinity.

For this purpose we solve an inverse spectral problem different from the
inverse scattering problem. This new inverse problem for the initial data g(z)
under consideration play the same role as does the inverse scattering problem
for initial data vanishing at infinity.

2

Let us consider the one-dimensional Schrodinger operator
42
" da?

with real continuous potential ¢(z) and denote by c(A, z), s(A, z) the solutions
of the equation

L= + g(z) (—o0 < & < o)

Lly) = A%y (3)
with initial data
c(A,0)=5(A,0)=1
c'(2,0)=s(A,0)=0 .
According to Weyl’s theorem for all nonreal z the equation
Lyl = zy
has solutions
Ya(5,2) = o(VE,2) + ma(2)s(V/7, 2)

belonging to the Hilbert spaces Ly(IR+) (IR4 = (0,00), R_ = (=00,0))
respectively:

Yi(z,z) € L2(Ry) .

The functions m4 (z) are connected with the spectral functions p4(u, o) of
the operators Ly (0o) generated in the spaces Lo(IR+) by the operator L and
the boundary condition y(0) = 0. That is:

my(2) :i{ai'f' 7 (Miz - 1_fu2> dpi(li700)} (4)

where a4 are some real numbers.
Instead of two functions m4 (z) and two solutions %4 (z, z) we introduce
a single function
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_fmy(A?) ImAi>0
n(}) = { m. (A1) ImA <0 ®)

and a solution of the equation (3)

Ye(A%z) ImA>0

1/)()‘, l‘) = C()\, $) =+ n()‘)‘s()" '7:) = {¢_(A3,$) ImA<0

which obviously belongs to the space L2(IR4+) when ImA > 0 and to the
space Ly(IR_) when ImX < 0. The function n(A) and the solution (), z)
will be called the Weyl function and the Weyl solution respectively.

The functions m4(z) are holomorphic outside of the real axis IR and
their sets of singularities respectively coincide with supports of the measures
p+(p, 00). From (4) it follows that the function n()) is holomorphic outside
of the real and the imaginary axes and its singularities which lie on the
imaginary axis form a set

2() = 24 U 02
where
2y = {X|£ImA > 0, \? € supp(dps (1, 0))} .

Since ¢(X, z) and s(A,z) are even entire functions of the variable A for
every fixed # the solution (A, z) is holomorphic with respect to A everywhere
outside of the set £2(i) UIR.

One of the key theorems is the following (Marchenko 1994)

Theorem 2.1 For any € > 0 the Weyl function n()) and the Weyl solution
Y(A, &) are holomorphic in the domain

A(e) = {A | dist(A, 2(1)) UR) > ¢}
and satisfy there the equalities
lim (iA)~'n()) =1
e (6)
IAlIim ey z)=1 .
In general the equalities (6) may not be true when € = 0. The necessary
condition for this is the absolute continuity of the spectral functions p1 (1, z)

in the neighborhood of infinity. A simple sufficient condition is the following
corollary of Theorem 1:

Corollary 1 If
(1) the potential q(z) 1s bounded from below:

inf  ¢(z) > ~o0

—oo<Lr<o0

(i1) the spectral functions py(p, ) are twice differentiable in a neighbor-
hood of +o00 and for some § > 0
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d? 2 s
lim %+6—{ -z 5}:0
pos oo H dp? P (k, 0) 3t ’

then the equalities (6) hold for e = 0.

3

From (4) it follows that there exist nontangential limit values almost every-
where on the real axis

my(t+10) = my (t — 10) = £{u4(t) + iv4 (1)}

where

vs(l) = 7 (pa(t,00)) 2 0

Therefore the function n(A) has nontangential limit values almost everywhere
on the real and imaginary axes

t
n(t +10) = tux (t?) + imvi(tz), —00 < t< 00
.  Jug (=t ivg(~t?) 0<t<oo
n(it +0) = { —u_ (=t} +iv_(—t?) —co<t<O0. (™

In particular the solutions ¥(t + 10, z), ¥(—t +10, z) are linearly indepen-
dent if

d (1,00) >0 <t< oo
—p4 (1,00 , —00
arf* r=t2

and for such values of ¢t we get
PY(t —1i0,2) = Ap(t +10,z) + Byp(—t +1i0, z)

where the coefficients A, B can be computed using the following system of
equations

A+B=1,
An(t+10)+ Bn(—t +10) = n(t - i0) .
When we solve this system we find that

n(t—i0) —n(=t+i0) _ () +u- (%) — ipglv+ () + v ()]

T n(t+i0) — n(—t +10) 2ili—lv+(t2)
Cn(t+i0) —n(—t —i0)  ur(t?) +u_ () +ifglos(t?) - v- (17)]
T n(t+i0) — n(—t +10) 2i|—§—|v+(t2)

Thus we arrive to
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Lemma 3.1 For allt € (—o00,00) satisfying the condition

> %P:&(f,oo) >0

e=t2
the equality

AT )t =10, z) = P(t 410, z) + d(t)(—t +i0, z)
holds and |d(t)| < 1. Here

d(t)_B(t) _ w8+ e () il () — v ()]
AW ur () +us () - i (22) + v_(22)]
and
AN ) = 1+ d(t) = At v ()
B =1+d0) = T 10) < 1
Setting .
YO = S ®
we find that
ATY ) =14d(t) = N(t —1i 0)”(” : 9)

It

The main ingredient is a special factorization of the functions N()) and
14 d(¢).
As it is known

where the nondecreasing function p(u) is the upper diagonal element of the
spectral matrix-function of operator generated by L in the Hilbert space
Ly(—00, 00).

This function has also another representation:

e ool L [ (- i) el

-0

where
6(t) = arg{my(t +10) — m_(¢t +10)}

and C is a positive number. According to (5) and (8) it follows from this that
we have
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VO =~ [ 2 deln) (10)
N(A):Cexp{%/ (F%“Tf?) n(t)dt} (11)
where
n(t) = éo(t) — 6(¢)
and

bo(t) = arg(ivET10) = { 2 0<t<oo

-0 <t<0 .
Let us divide the set £2(1) into two disjoint subsets

 ={¢ €€ (), —¢ ¢ 2(i)}
2, ={¢ €€ (), - €2()} .

Further we suppose that

A) The conditions of Corollary 1 hold.

B) dist(£2,, §22) > 0.

C) The set 25 can be covered by a finite number of mutually disjoint
intervals A; on each of which

sup 6(¢t) — mnf 6(¢) < «w .
sup (t) Anf (t)

Then without loss of generality we can assume that the functions pi (i, 00)
are twice differentiable on the whole positive semiaxis and

oo>;—€pi(f,oo)>0 (0<é <o) .

In this case n(t) = 0 in some neighborhood of —oo and the formula (11) can
be transformed to the form

jV()\) = exp{;lr_ / tTt))\Z dt} .

—00

The set (—o0,0] \ 2%, where 02?2 = {£? | £ € 1}, consists of a finite or
denumerable family of disjoint intervals (—a2, —b2):

(—00,0\ 2F = J (—af,—b}) .
k
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Lemma 3.2 Each interval (—a2, —b%) splits into two intervals (—a?, —c}),
(—c2,—b%) so that
—q? 2
n(t) = {O t € (—aj,—cg)

™ te(—ci,—b?)

(—c2 € [—a?, —b2] and one of the intervals may be empty).

Let us denote by v1(€), x2(§), xs(§) the characteristic functions of the
sets £21, 22, U, (—ci, —b%) and by 6(¢) the function

£ Ret=0
are) = 4 ilél
© {% Imé=0 .

Lemma 3.3 (factorization) The function N(X) can be factorized as fol-
lows

N(X) = a(X)a(=X)

where
(A L T e, T e
‘1;[<1c,c— ) 27({_ / ex / E—/\H(E)dé}
() = { [2x1(6) + x2(&)n(€?) — x2(€)xs(€)7 Ref =0
n(&?) Imé=0 .
From (9) and Lemma 3 it follows that for ¢ € (—o0, c0) we have

ATHt) = 1+ d(t) = a(t —i0)a(—t + iO)v”ngf)

and because

at — i0 R 1 _ o
Et-l-i(); *Por 2T / <f —t4+10 - f—t—i()) ¢(lf)9(f)d§ — e it )9(t)’

— 00

a(t +10)a(—t +1i0) > 0
then

a(t —10 vy (t? in(12)9(1
14d(t) = %T; At + 10)a(~t + i0) Jflﬁ ) = =00 |1 4 g .

/ln[1+d
—exp—
27

Assuming

we find that
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b(t — i0)
b(t + 10)

I1+d(€)] =

and
a(t —10)b(t —10)

A7) =14d(t) = a(t +10)b(t +10)

So we get the following result:

Theorem 3.1 The function A=1(t) = 1+ d(t) has the following representa-
tion

_ R(t—i0)
1+d(t)—m (—OO<t<OO)
where
_ (=AY L T a0 + il + )
7y = a0 =TT (253 p%u e
T 12x1(6) + x2(O)(E) — xa(E)xs ()
_ / —— 6(§)df} .

The singularities of the function R(X) lie in the set |J,{icx} U 2(1)) UIR and
|R(t +10)| = |R(—t +10) (—oo < t < 20)
lim R(A)=1.
R

From Theorem 2 and Lemma 1 it follows that for all ¢ € (—o0, 20)

R(t —i0)3(t — 10, z) = R(t +i0)%(t +10, ) + R(—t +10)3h(—t +i0)r(t) (12)

where
_ R(t+10)
r(t) = R—+10) (t)
and
Ir@) = [d(@)] <1 .
4

The function
g(A) =g\ 2) = e_i’\xR()\)i/)(A, z)

is holomorphic outside of the real axis and of the set £2(i) U D (where D =
(U, {ick}) which lies on the imaginary axis.
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Lemma 4.1 The function g(X) satisfies the equality

m g(A)=1 (13)

[Al—o0

in the whole complex plane and uniformly in every strip | Re \| < M it satis-
fies the equality

xr

lim iA(g(\) - 1) = R(c0) + % / g(t)dt | (14)

| Im A |—
0

where
R(oo)= lim iA[R(A)—1] .

| ImA|—o0

As the function g(}) has continuous limit values g(t £ i0) for all ¢ €
(—00,00) then from (13) and the integral Cauchy formula it follows that

1T g(t+i0) — gt — i0) 9(8)
g(A) = 1+27r1/ Y dt-+— f )\df

— 00

where the system of closed clockwise oriented contours I" envelops the set
2(i) U D. Because of £2(i)U D = £25 U (£, U D) and dist(£29, 2, U D) > 0
we can change the system I' to two systems [s and I of nonintersecting
contours enveloping the sets {23 and £2; U D respectively. The conditions A),
B), C) make it possible to shrink contours of the system I'; to the set £2, and
as a result to obtain the equality

G i/""[g(e—m—g(uonmw i

271'1 E = om E— X

—ioo

From the equality

e~ R(g)

9(é) = RO

9(=€) + 7% s(€, 2) R(E)[n(€) — n(=€)]

and formula (11) it follows that

27” gg(E)A 0 = / M_tti—e;wg(_t)xl(t)R(—t)*Zd(ﬂ(—t)l’(tz)).

—ioo

From the equalities thus obtained and formula (12) it follows that
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1T g(—t+i0)e=2
N=1-— [ AT g
s =1- 5 [ LR

— 00

v/ B0 o (R (- 0%)

A t—A
ioo
1 g(t—0)—g(t+0) ,
+27ri / TN x2(t) dt (15)

and

[ et e ()
FO =1- g [ 152

- 00

B 70 ig(—t)e~ 2= 4(¢)

1 e Xa(t) dt

—i00
100

+§;—ivp/ g(t—ot);g(Ho) x2(t) dt (16)

—ioco

where f(€) denotes the half-sum of nontangent limit values of the function
g(—X) when X — £ € £2(i) U(~c0,0), and vp [ denotes the principal value
of the integral.

As the function g(—A) is holomorphic on the set 2, U D then

F&) =ey(&) ,  wnE) =g(—€e™ (€€ UD)

and from (12) and the equality |r(€)|* = r(—&)r(€) it follows that

(€)= € po(6)™ {u0(©) + 51r(€DIwo(~6)|  (~o0 < € < o0)

where ;
po€) = V() . wol€) = g(=€ +10)/r(E)e™" .

The following Lemma 5 is a direct consequence of (7) and Theorem 2:

Lemma 4.2 The limit values of the function g()) on the set {22 are con-
nected by the equality

FE) = € py(€) 71 [32(€) + (E)m(€)*)ya(—£)]

where
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[9(€ = 0) — g(& + 0)] i6(€)e’e™

P2(§):\/ “'ﬁ(fgl e#(©)(€) cosh a(¢?) tan H(€2)
m(§2) = sinh a(f ) cos X3(f2)7r

U+(E )
a(é?) = LTS

B = §|77(£2) ~xs(€)n] .
Let us introduce the functions

y(€) = y(& ) = yo(&)xo(€) + y1(&)x1(8) + y2(&)x2(8)
p(€) = po(€)x0(€) + x1(€) + p2(€)x2(€)
and the measure

) = &) o+ 1 VR 4 (A-E0E”) + x2(6)

where yo(§) denotes the characteristic function of the set (—oo, 00). Then we
can write (15)—(16) in the form

e—iﬁx
o) = 1= [ MR (€)= 860001+ ()} ()

(&) + {O(EmIE () + D o)} w-6) +

e_l(E n)x ’
* VP/ - i(e :7,) o) y(n) {xo(n) — 0(n)(x1(n) + x2(n)} du(n) =
=p(§)e™ . (17)

From the first equality and Lemma 4 it follows that

R(c0)+ /Q(ﬁ d¢ = / (&, 2)p(€) e {x0(&) = 0(E)(x1(€) + x2(€))} du(€)

and

@) =25 [ o6 DO {xa€) = (O (O) +x2(O)} dul6) - (19)

For every fixed z € (—00,00) the function y(€) = y(£, z) belongs to the
space Lo(dpu(€)) and satisfies equation (17), whose unique solvability can be
proved in the same way as in (Marchenko 1987).

The functions p(¢), m(£?) and the measure du(€) are called the spectral
data of operator L. The above arguments thus give the following theorem:
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Theorem 4.1 The speciral data p(€), m(€2), du(€) define uniquely the op-
erator L. The potential q(x) can be reconstructed by the formula (18) where
y(€) € Lo(dp(€)) is the solution of the equation (17) that is uniquely solvable
in the space La(dp(€)).

5

The inverse problem we consider (reconstruction of the potential ¢(x) by the
spectral data p(€), m(£?), du(€)) allows to solve the Cauchy problem (1)-(2)
if operator L with the potential g(z) = u(z, 0) satisfies the conditions A), B),
C). Replacing the function p(€) in (17) by p(&,t) = p(€) HE’t we get a family
of equations depending on the parameters z, t. It follows from the results of
(Marchenko 1987) that for any real , ¢ the respective equation has a unique
solution y(&; z,t) = y(€) € L2(dp(€)) and the function

u(z,t) = 2%/1/(5; 2, )p(€) eI L30(€) — 0(E)(x1 (€) + x2()} du(€)

will satisfy KdV equation.

As u(z,0) = g(z) according to Theorem 3 then the function u(x,t) is the
solution of Cauchy problem (1)-(2). So the scheme of solving the Cauchy
problem remains the same

g(z) — my(z), m_(2)
— p(€), m(€?), du(é)
— p(€) et m(€?), du(€)

— u(z,t) .
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Inverse Problem on the Entire Line and Some
Connected Questions of Spectral Theory

B. M. Levitan

University of Minnesota

Abstract. In this paper we consider several separate questions for one-dimensional-
Schrodinger operators on the entire line. The paper consists of an Introduction,
seven short Sections and three Appendices. Each of these Sections and Appendices
is almost independent.

0 Introduction

This paper contains several results on the spectral theory of Schrodinger
(Sturm-Liouville) operators on the entire line:

-y +q(z)y =Xy, —oo< &< +oo. (0.1)

In this paper, ¢(z) is supposed continuous on (—oo, +00) and real.

In Section 1, we present some fundamental results in the theory of equa-
tion (0.1).

In Section 2, we consider a necessary and sufficient condition for the eve-
ness of the potential ¢(«). This condition can be expressed in a simple form:

dpi2(A) =0 (0.2)

(for definition of p12(A) see Section 1). The proof of the necessity of condition

(0.2) is well known and is trivial. Unfortunately, we don’t know an elementary

proof of the sufficiency. Our proof of sufficiency of the condition (0.2) is

based on the integral equation of the inverse problem for a one-dimensional

Schrodinger operator on the entire line from the spectral matrix-function.
In Section 3, we consider the Cauchy problem

O*u  H%u
52 = 92— d(@)u (0.3)

ult=0 = f(x)a %;It:o =0. (04)

As it is known from the authors previous investigations, explicit formulas
for the solutions of the problem (0.3)-(0.4) are very useful in different spectral
problems for the equation (0.1).
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In Section 4, we prove the asymptotic expansion of the function w(z,t, z)
for fixed x as ¢ — 0. The function w(z, ¢, s) is crucial for solution of equation
(0.3) and is defined in Section 3. The final result about asymptotic expansion
of w(z,t,z) isn’t new, but the method seems to be new.

Section 5 is auxiliary for Sections 6 and 7. We give there a short intro-
duction to the theory of finite gap potentials. Our method is based on the
inverse problem on the entire line from the spectral matrix. The manifold of
the finite gap potentials obtained by our method coincides with the manifolds
obtained in the papers of S. Novikov [7], P. Lax [8], and J. Moser [9],by using
other methods.

In Section 6, we introduce important functions which present a true gen-
eralization of the classical Floquet solutions. In the case of periodic finite gap
potentials, the formula (6.1) is given in B. Dubrovin’s paper [12].

In Section 7 is proved a general trace formula (7.4) for real finite gap
potentials. A formula close to (7.4) was obtained earlier in the case of a
periodic potential by McKean - Moerbeke ([13], corollary 1 and 2, page 257).

In Appendix I we discuss how trace formulas (7.5) and (7.6) can be used
in studying the infinite gap potentials.

In Appendix II we compare the functions (6.1) with the classical Floquet
solutions of the Hill equation.

Finally, in Appendix III we obtain the asymptotic formulas for the entries
of the spectral matrix. Our proof is based on the formula (3.6) and special
Tauberian theorems (see [10], [14] ).

1 Necessary information about the spectral theory
of the Schrodinger (Sturm-Liouville) operator on the
entire line

All problems we study in this paper are connected with the spectral theory
of the operator

l(y) = —y" +q(x)y, —oo<a<+00

in the space £2(—00,c0).
We suppose that ¢(z) (the potential) is real and continuous in (—o0, 00).
Denote (in this section and hereafter) by (z, A) and ¢(z, A) the solutions
of equation
-y +q(z)y = Ay — 00 < ¥ < +00 (1.1)

satisfying the initial conditions:
00,0 =0, =1, #(0,A) = p(0,X) = 0.

According to a classical theorem of H. Weyl ( see e. g. [1], [2] ),there exist
functions mj(A) and mg(A) regular in the upper half-plane such that for
ImA>0
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P1(z, A) = 0(z, A) + mi(A)p(z, ) € L2(—o0,0)

Ya(z, ) = 0(z, A) + ma(N)p(z, A) € L2(0, +00).
It is easy to see that

W (W1, 12) = 19y — athy = ma(A) — my(X).

The functions m; (A) and ma(A) are known as Weyl-Titchmarsh functions (co-
efficients). Troughout this paper we will suppose that the Weyl-Titchmarsh
functions are unique (disregarding constant factors). This assumption is not
necessary in our investigations, but leads to some simplifications. If m; ()) and

mx(A) are unique, then the resolvent R(z,Y; A) of the operator [ = —D?4q(x)
1s also unique and has the form

Ya(z, MY (y,2) fy<z

my(A)—mz(A)
R(z,y; A) =

iz, )P2(y,A

mq(A)—=ma(A)?

The following theorem was proved by H. Weyl ([1], [2]):
To every equation (1.1) corresponds a symmetric nondecreasing matriz-

function
p11(A) p12(A) o N
<MAmen)’( <A< )

such that for every smooth function f(x) with compact support
f@) = [ (FO0 o (3) + [F Nl 1)+
GNb(, Vldpra(A) + G\, Ndpss (W)}, (1.2)

ify>z.

where

mn:/ffgwanw, mn:%iﬂmwanm.

Remark 1.
As the matrix p(A) is symmetric and nondecreasing, the inequality

(p12(A))? < p11(AQ)paz(A)

is valid. Here A = (o, 8), pjx(A) = pjr(B) — pjr(e); «, B are points of
continuity of the martix p(A).

Remark 2.

In many applications the following formulas are useful:

. 1P
pjk(ﬂ)—pjk(a)zil_r%;/a Mjk(a:+zu) dz. (1.3)

where
My (z) = (my(z) — ma(2) ™",
Myy(2) = 1/2(Tn1(Z)*-7n2E23)("?182)—-Tnz(Z))_l
M) = o — ey
Formulas (1.3) are colled Titchmarsh-Kodaira’s formulas.
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2 The evenness condition of the potential

Theorem. The necessary and sufficient condition for evenness of the poten-
tial q(z) is:
dpra(3) = 0. (2.1)

Proof. a) Necessity. Denote by L2 (—c0,00) and £* (—00,00) the subspaces
of the Hilbert space £*(—00,0) of even and odd functions. If ¢(z) is even,
then the subspaces E'j)r and £l are invariant with respect to the operator
| = —D? 4 q(z). This proves the necessity.

b) Sufficiency. Our proof is based on the integral equation of the inverse
problem on the entire line from the spectral matrix-function (see [3], [4] ).
This equation has the form:

T

swmew+me+/<Mamew:m 0< Iyl < Jz] < o0

-

(2.2)
where
F(z,y) = Fi(z,y) + Fa(2,y) + F3(z, y)
Fi(z,y) = / cos VAz cos VAydoy1 (M),
* sin \/X(a: +y)
Fo(z,y) = ——dp12(N),
2(z,y) /_OO 7 p12(A)
F3(z,y) =/ Mﬂf;g@da”(/\).
Here o) L
— P11 A) — T )" A Z 05
ou(A) = { o1 (A, A <0
_ P22()\) - 3%/\3/21 A Z 07
o22(}) = { p22(A), A <0.
Independently of sign z, the potential ¢(z) is given by the formula
d
=2—K . 2.
q(z) de K(z,z) (2.3)

If dp12(X) = 0, then Fy(z,y) = 0 and

F(z,y) = / cos VAz cos VAy doyy () + / amvArIRvA \/—m)\sm Vi doga(N).
—oo -

(e o]

From the last equation follows:

F("xa_y) = F(l‘,y).
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Replacing by —z, y by —y, and ¢ by —t in equation (2.2),we obtain
signz [—-K(—z,-y)] + F(z,y) +/ [-K (=2, ~)]F(,y)dt=0 (2.4)

If the integral equation (2.2) has an unique solution, we can obtain from (2.2)
and (2.4):
—K(-2z,-y) = K(z,y).

In particular, for y = «
K(-z,—2)=-K(z,z) (2.5)

From (2.3) and (2.5) follows: ¢(—z) = ¢(z)
Remark. If the growth points of spectral matrix p(A) have at least one
finite limit-point, then the integral equation (2.1) has an unique solution.

3 The auxiliary wave equation

The integral representation of the solution of the Cauchy problem

62U 82”& au
—6? = 5—3;2— - q(:c)u, Ult:O = f(l'), gh:o =0 (31)

is useful in exploring many spectral properties of the equation(1.1) (see e. g.
[5]).
The solution of the problem(3.1) can be obtained by two ways:

1) Using the spectral expansion (1.2}, the solution can be expressed in the

form
oo

u(z, 1) :/_ cos VAL{F(N)0(z, A) dp11(A)+

HFWe(a,A) + GO0, ] dpia(X) + CNe(e, A) dpas (V) (3:2)

i1) Using Duhamel theorem and successive iteration, the solution can be
expressed in the form

r+1
u(z,t) = %[f(:c +t)+ f(x —1t)] + %/_t w(z,t,s)f(s) ds. (3.3)

As the problem (3.1) has an unique solution, from (3.2) and (3.3) we
obtain an important identity:

/_ " cos VA{F(N(z, \)dp11(A) + [F(V)e(z, X) + GA)0(z, N]dp12(A)+

1 1ot
+GONp(a, Nipaa) = G+ a0+ [ wlats)f(0)ds (3.4)

r—1

Choose now a function g.(t) with the properties
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1) ge(t) 1s even,
2) g(t) is smooth and has a compact support supp g.(t) C (—¢,¢). Let

ge(p) = / ge(t) cos ptdt
0

be the cosine-Fourier transform of g.(t). As g.(¢) is smooth, §.(p) decreases
rapidly as p — Foo.Multiplying the identity (3.4) by g.(t) and integrating,
after some simple calculations (see e. g. [5]) we obtain

| ss [ " (VA6 NG5, Ndpr (V) +
+p(x, M)0(s, X)) + 0(x, N)p(s, A)]dp12(A) + (x, A)p(s, N)dpaz(N)} =

1 Te T+e € ‘
= 5/40 ge(s —z)f(s)ds + %/x_e f(s)ds Av—s| w(z,t,5)g:(t)dt.

-€

As f(s) is arbitrary, from the last equation follows

/ h G(V2){0(z, Mo(s, \dpry (\)+

— 00

+0(z, M)(s, A) + 0(s, No(z, M)]dp12(A) + (2, A)p(s, A)dpaz(A)} =

_ %ge(:l: —-s)+ %fli—SI w(z,t,8)ge(t)dt, |z —s| < (3.5)
- 0 |z —s| > e '

The case s = & is of particular interest. In this case it follows from (3.5)
that

/_Oo F(VN)[6* (2, \)dp11(N) + 20(z, \)p(z, A)dp12(X) + @ (2, \)dp22 (V)] =

_ %ge(O)-l- %/0 w(z, 1, 2)g.(1)dt. (3.6)

4 The asymptotic expansion of w(z,t,z)

It is well known that a product of two solutions of the equation —y" +¢(z)y =
Ay is a solution of the equation

M —4qd — 2¢' 2z = 4N (4.1)

Suppose that g.(0) = ¢”(0) = 0. Applying to equation (3.6) the operator

d
= D3 — 2D D=—
L 49D — 2(Dg), T

and using equation (4.1), we obtain:
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/ ~AGe(VN)[0%(2, Ndp11(N) + 20(z, N (z, N)dpra(X)

+o (;c A)dpaa(N)] = / Low(z,t,z)]ge(t)dt (4.2)

As —)§(V/X) is the cosine-Fourier transform of g/ (t), from (3.6) follows

/ YN, a3 + 2602, el Nidpra(N) + (2, Mo (V)] =

S O PN Y A
_2/0 wle )l = 5 [ Srule Lol (43

From (4.2) and (4.3) we get

/0 0 et et = / Colw(e,t,2)lgt)dr.  (4.4)

As g.(t) is arbitrary, from (4.4) follows (for 0 < ¢ < ¢)

o? 1
Let !
(z,.2) Zt2k+lAk(l (4.6)
k=0

Substituting (4.6) in (4.5) and comparing the coefficients in terms with
1241 we obtain the recurrence formula

9
Oz

Apti(z) = Lo[Ak(z)], ; k=0,1,2,...

1
4(2k + 3)(2k + 2)
In particular, for £ =0

0 1
It remains to calculate Ag(z). From equation (3.4) with f(s) = 1 follows

(using Taylor’s formula)

1 4+t
u(z,t)y =1+ —2—/ w(z,t,s)ds
T

-1

10w ot 3 3
= 1+tw(z,t,z)+ [ _z/ (s—2)ds+ O(t°) = L +tw(z,t,z)+ O(t°).

r—1

Differentiating this equation twice with respect to ¢, we obtain

! Existence of the asymptotic expansion (4.6) can be based on analyzing the suc-
cessive approximation of w(z,t, s).



20 B. M. Levitan
0%u
ot?
From (4.8) and (3.1) for t = 0 we get

= 2 + i + O(t). (4.8)

0
—q(z) = 25;wlt:0~

Using expansions (4.6) and (4.7), we obtain now

Ao(#) = ~54(2)

and from (4.7)
As(z) = 75(=¢"(z) + 3¢°(2))

5 Necessary information about finite gap potentials

Let —00 < Ag < A} < p1 < Agypp < oo < Ay < piy < 400 be 2n 41
arbitrary real numbers. In every interval [Ax, px], & = 1,2,...,n choose an
arbitrary point & and prescribe in it an arbitrary sign ¢y = 4. Define four
polynomials:

R() = (A= 20)(A = M)A = 1) . (A= Aa)(A = pan),

)=(A=&)A—&)...(A =&),
n 1/2
Q) = P()) Ze]% (5.1)
R() +@Q%(Y)
Py

It can be proved that S(A) is a polynomial of degree n + 1 with leading
coefficient equal to 1. The last equation in (5.1) can be written as

SP() - Q*(A) = R(Y) (5.2)

The intervals [Ag, pi] are called gaps,because they are gaps in the spec-
trum of a Sturm-Liouville operator, which will be defined in the next theorem.
Intervals adjacent to gaps are called permitted intervals. Their union

0= [A()y A1] U [ul, /\2] U e U [Hn—l; Aﬂ] U [Hna+00]

is the spectrum of the operator which we shall define below.
Using polynomials (5.1),define three functions:

P(A
dpu()\) - %im,AEJ
dA 0, \Eo
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FEVEm S (5.3)

dpas(N) _ ;ﬂgj—% Aeo
dA 0, AEo.

These functions are entries of the spectral matrix of a Sturm-Liouville
equation with a finite gap potential. The sign of the square root of R(}) is
defined in the following way: on the first interval (Ao, A1) of the spectrum

@%ﬁ must be positive. On the following intervals of the spectrum the signs
of [R(X)]}/? are defined by analytic continuation.

Theorem.
Let

p11(A) Plz(/\)>

A) =

P <012(/\) p22(A)

where the functions p;;()) are defined by equations (5.3). There exists a
unique equation of the form

¥+ q(z)y =My (5.4)

whose spectral matrix coincides with p(A).(For the proof of this theorem see
(3], [6]-

The) potential ¢(z) in equation (5.4) is called a finite gap potential. This
class of potentials coincides with the manifolds of finite gap potentials defined
by S. Novikov [7], P. Lax [8], and J. Moser [9] independently and by different
methods.

Let t be an arbitrary real number. Consider the equation

-y +q(z+t)y = Ay

It can be proved that for every ¢ the potential ¢(x + t) is also a finite gap
potential with the same gaps as in the case of potential ¢(z), but the spectral
parameters £ and ¢ are moving with ¢ :

£ =& (t), e =ex(t).

It is convenient to exchange the places of z and ¢. Put

Pz, A) = (A= &(2))(A = &(2)) - - (A = &a(2)),

) ¢ (2){=RI&; ()]}
Q(z,4) = P(z ’\)Z(/\ & ()P (Nr=¢i(x)’

R(X) + Q*(z, ))
P(z, ) ’

S(J?,)\) =
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It can be proved (see [3], [6]) that:

P(z,)) = P(A)6*(z,A) +2Q(V)0(z, \p(z, X) + S(N)¢® (, 1),
Q(z, A) = PNz, \)0' (z, X) + QN[O (z, Ne(a, A) + 0(z, A)¢’ (&, M)+
+S(Ne(z, \)¢' (2, A), (5.5)
S(z, A) = POVO? (2, 0) +2Q(N)0' (2, \)¢' (2, A) + S(A)@"(z, A).

The functions 8(z, A) and ¢(z, A) were defined in section 1.

Differentiating equations (5.5) in & and using equation (5.4), we obtain:

d
EI—;EP(;U, A) =2Q(z, N),

£ Qw0 = 5(2,3) + laf2) = AP, ), (5.6)

L5, 3) = 2la(@) - Q. V).

The equations (5.6) play a crucial role in the next sections.

6 The generalized Floquet solutions

The functions

are generalizations of classical Floquet solutions of Hill’s equation.
Theorem.
The functions ¥4 (2, A) are solutions of equation (5.4).
Proof. From (6.1) and the first equation in (5.6) we can obtain

Qa.N) | VA

P(z,N) Pz, \) P (2, 4). (6.2)

d
%wi(élh )‘) =

As ¥4 (0,A) = 1, from (6.2) it follows that

W _Q®) | VR
l/)i(O,)\)_m:tz PO
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Differentiating (6.2) and using (5.6), we obtain

Wiz, n) = LE=CQP ¥ iVRP ¢':|:+(Q VR

P2 j: _—> d}ﬂ:(va):

_(qge) = N)P*+SP-2Q*F 2iQ\/J—%¢
= 5 + +

v L @VR _ R

p2 P2 p2

Yy =

~ {0 -0+ R gy = o) -

as SP—-Q?>—- R=0.
Thus

which coincides with equation (5.4).

7 Proof of the trace formula

We start from the equation (6.2) of the preceding section:

P (2, A) = Yz, N)

Denote
Yy (2, A)
Pi(2,A)
We obtain, by differentiating:

g ¥ vy —¥¢
Vi

2(z, ) = P (7.1)

=q(z) - A-2°
or

422+ A —q(z)=0. (7.2)
Put k£ = /X and let

=ik + Z (051(1:;3 . (7.3)

Substituting (7.3) into (7.2), we get

00 0_](1, o0 . 2 2
Z(2zk)1 [ Z:: )3} + k= qx) =0,

Equating to zero the coeflicients of (2ik)™", n =0,1,2...., we obtain
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o1(z) = q(z), o3(z) = —0i(z) = —¢'(x), o3(z)=¢" -7, . ..
The general formula is:
ol +0op41+ 0101+ - F0p100=0, n=23,....

From (7.3) and (7.1) it follows that

zk+Z (M = 9= VR (7.4)

P(a: N i P@ )

Separating the odd power of k = v/X we get

o0

Ooita(®) _ i Oaj41(2) _
’k+z (2ik) %+ ik — ik Y (~1) PN

j=0

VI _ (12 %)" [(1—%)(1— )00 - —>}’

=1— =
P(z, ) A (1- %ﬂ)z (1 = =)y
Dividing the last equation by ik and taking In, we get

1 Ao 1 - X; Wi £(x) B
§ln<1—7)+§;[ln<1—-—)‘i>+ln<1——}‘J—>—2ln<1— J/\ )] =
=In l:l — Z( 1 .202?]_1_4;1)\]_1_)1} .

Expanding In in series we obtain:

S e () + () -2 (592 ] -

r=1 _]17‘1

5t ez o

n=1

Comparing coefficients by the same power of A™!, we can obtain trace for-
mulas of arbitrary order.
The first two trace formulas are:

Ao+ D+ my = 2%(2)] = a(2) (75)
M+ Y 4 - 26w = () 4 (). (76)

j=1
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8 Appendix I. Applications to infinite gap potentials

Formulas (7.5) and (7.6) permit us to obtain some information about infinite
gap potentials. Let Ag > —o0 be fixed and suppose that an infinite sequence
of pairs of real numbers (Ag, tx), pr > A, k=1,2....1s given on the right
of Ag . Suppose also that the following conditions are fulfilled:

1) The pairs (g, pi;) are arranged in decreasing order, that is (g3 — A1) >
(pta — A2) > -+ -, and not overlapping.

2) There exist constant positive numbers a; and a, such that

|/\0|+2§:(u —A)=a;, A +QZ 2% . (A.1.1)

Choosing an arbitrary number N we consider the intervals

()‘11/11)1 ()‘21/12)1 . '(ANMLLN)

as gaps. In every gap let us choose an arbitrary point & € (A, ux) and
let € = =+ be chosen also arbitrarily. According to the results of Section
5, there exists a unique potential ¢n(z) with prescribed Ag, prescribed gaps
(A, k), 1<k <N and prescribed £ and .

The estimates

lav(@) < ar, laR(2)] < 2(af + a2)

follow from the trace formulas(7.5), (7.6) and estimates (A.L.1).The first in-
equality means that the family {gn(2)}%~; is uniformly bounded on the
entire line. The second inequality means that the family {q¢}(z)}%_, is also
bounded on the entire line. From a classical theorem follows that the family
{f4(2)}Y is also bounded. Therefore the family {fn(z)} is compact (in the
sense of uniform convergence on every finite interval). Denote by ¢(z) some
limit point of the family {¢n(z)} and consider the equation

-y +q(@)y=2Ay, —oo<z< +o0. (A.1.2)

The following question arises naturally:
Does the spectrum ¢ of equation (A.1.2) coincide with the limit of spectra
on of equations

-y +qn(x)y = Ay?

In some simple cases the answer 1s positive, as in the case when the distances
between the gaps are bounded below.
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9 Appendix II. Some remarks about the analytic
structure of the generalized Floquet solutions

In the case of finite gap potential with arbitrary gaps, the spectral parameters
&;(z) as functions of = are almost periodic functions (quasi periodic with the
same periods for all 7, see e. g.[3]).

In order for €j(x) to be periodic, the gaps must be located in special
positions. Consider now the formula (6.1). In this formula the factor [P(z)]*/?,
in general case is an almost periodic function. The situation is much more
complicated for the function

/Oz %T)' (AII1)

If ) is outside the spectrum of equation (5.4), then P(u, ) # 0 for all real
u and is almost periodic. Therefore the function 1/P(u,A) is also almost
periodic.

The expression (A.IL.1) is an indefinite integral of an almost periodic
function. There exists a notable difference between the indefinite integrals of
periodic and almost periodic functions. Let f(z) be a periodic function with
period a . Then

/Ox f(z)dz = cox + () (A.I1.2)

cp = %/0 f(z)dz

and ¢(z) is periodic with the same period a.
In the case of almost periodic functions the formula (A.I1.2) holds also,
but now

where

1 T
co = lim —/ f(z)de,
0

T—oo T

and generally the function ¢(z) is not bounded and therefore not almost
periodic.? There exist sufficient conditions for almost periodicity of the func-
tion ¢(z). For example, it is enough that the Fourier exponents of the almost
periodic function f(z) have a gap in some neighborhood of zero; neverthe-
less,it is hard to believe that this can happen for finite gap potentials.

2 According to a classical theorem of H. Bohr for almost periodicity of an indefinite
integral of an almost periodic function is necessary and sufficient the boundness
of the integral.
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10 Appendix III. Asymptotic behavior
of the spectral matrix

Our starting point is the formula (3.6). Having in mind some simplifications,
we suppose that the spectrum of equation (1.1) is non-negative. After sub-

stituting pjx (1), 0(z, ). @(z,A) by pje(r), 0(z, 1), @(z,p), p=+/A, the
formula (3.5) takes the form:

/OOO Ge(u){0(z, p)0(s, p)dp11(p) + [0(z, p)p(s, 1) + @(z, 1)0(s, p)]dpra(p)+

+o(z, p)p(s, p)dpaz(p)} =

_ %ge 2 f:c SI l',t,S 96( )dt’ |17— S| S €
N |z —s| > e

(AII11)

The case s = ¢ has special interest. In this case

/Ooo Ge(w)[0%(z, p)dpr1(p) + 20(x, p)p(x, w)dp12(p) + ©*(z, p)dpas(p)] =

= —1—gf(0) + l/ew(x,t, z)g.(t)dt (A.II1.2)
2 2 Jo

For z = s = 0 formula (A.IIL.1) gives

€

*® 1 1
/0 Fomdpus () = 590) + 5 / w(0,t,0)g.(t)dt.  (AIIL3)

Using (A.II1.3) and the method described in detail in our paper [10], it
can be proved that

1) the estimate p11(a+ 1) — p11(a) = O(1), a — +oo,

2) The asymptotic formula

1
€)= —p+0(1), p— oo

In order to obtain the asymptotic formula for pis(p) differentiate the
equation(A.II1.1) once with respect to « and once with respect to s. Putting
then z = s = 0, we obtain

/ ﬁe(ﬂ)dpzz(uh—%ge )+ age(0 / B(t)ge(t)dt (A.II1.4)
0

where « is a constant and () is a bounded functlon.Usmg the method of
[10], we can obtain, from (A.III.4),

1) the estimate paz(a + 1) — pa2(a) = O(a?), a — +oo,

2) the asymptotic formula

1
pro(p) = 5-1>+ O(p?), p— +oo.
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The asymptotic behavior of pi2(¢) cannot be obtained, because, as we
have seen in Section 2, dp12(i) can be zero; nevertheless, a strong estimate
of p12(p) can be found for g — co. At first, we have to prove the estimate

Vargt'{pi2(p)} = O(a), p — +oo.

As the spectral expansion of the operator (2.1) on the entire line can be
obtained as a limit of the expansions on finite intervals, we can suppose that
the spectrum of (2.1)is discrete.In this case (see[11], chapter 2)

pu(a+)—pu(e)= > of=0(1),

a<lpr<a+l
pas(a+1)—paa(a) = Y Bi=0(d%,
a<pr<a+l
pr(a+1)—pa(@)= > b
a<pur<a+l
Therefore
1/2 1/2
Vard™ {pa(w)} < Y lawfel < Yo o Y. B =
a<pu<a+l a<pur<a+l a<pu<a+l
= O(a). (A.II1.4)

Differentiating equation (A.IIL.1) with respect to # and putting £ = 0, s =0,
we have

/OOO Ge(p)dpr2(p) = %/Oea(t)gf(t)dt (A.I11.5)

where 5
a(t) = ——w(z,t,8)|r=s=0

Oz
From (A.II1.4), (A.IIL.5) and the Tauberian theorem [10] follows the estimate:

lp12()l = O(p), p— +oo.
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Abstract. This report is a review of the qualitative theory of quantum design:
about our discoveries of new features of quantum systems by visualizing all possible
potential and wave function transformations for variations of a complete set of
independent spectral and scattering parameters. Special attention is paid to recently
revealed multichannel aspects of this theory.

1 Introduction

There was a break-through in the last years (see e.g. [1-4]) in our understand-
ing of relations between interactions (shapes of potentials) and observables
(spectral, scattering and decay data) which form the main contents of quan-
tum mechanics. This progress was based on the achievements of mathematical
formalism of the inverse problem (IP)! and supersymmetry (SUSY) [5-9].

From our point of view the main worth of IP and SUSY consists in provid-
ing us with wide classes of exactly solvable models (and often even complete
sets of them). It is of a great importance that visualization of these models
allows us to reveal universal and unexpected phenomena hidden before. And
the results derived by using exact models will be valid for ever.

The qualitative theory of quantum design for one-dimensional and one-
channel systems was almost completed: it is clear now which potential trans-
formations are necessary for the desired changes of physical properties. There
were discovered even elementary constituents (”bricks”), which these trans-
formations are composed of [10].

In this report we shall remind the basic rules of one-channel spectral
management and then emphasize the peculiarities of multi-channel general-
ization of our qualitative theory to more complicated quantum systems. This
multichannel approach is important as universal way to reduce the multi-
dimensional and many-body partial Schrodinger equations to a system of
coupled ordinary differential equations.

! This report was made in the presence of fathers-creators of IP: mathematicians
B.M.Levitan and V.A.Marchenko from whose shoulders we have seen new phys-
ical horizons.
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2 Golden Rules of One-Channel Spectral Control

The rules of elementary one-channel transformations are also important con-
stituents of the quantum design for more complicated objects. Now we can
predict qualitatively, without analytic formulae and computers, the shape
of potential transformations needed for energy shift of one arbitrary bound
state level without moving all () other levels in accordance with the exact IP
and SUSY formalism [1,5,7]. From the direct problem point of view it may
seem impossible to satisfy an infinite number of these conditions. But for the
IP and SUSY approach it is the simplest task.

Take into account that any quantum state which we want to transform
Is more sensitive to potential perturbations at the places of its increased
concentration (intensity of wave), that is at the bumps of standing wave.

So, for lifting (lowering) the chosen energy level we should push the cor-
responding state by partial potential peaks (wells) at the places of its bumps.
But these peaks (wells) will also shift all other states and we want only one
state to be shifted. So, there must be also compensating partial wells (peaks)
at the places of knots of the chosen state where this is less sensitive to poten-
tial changes. For example, to push up the Nth state, AV(z) should possess
N repulsive peaks and N+1 attractive wells.

In the process of motion of the chosen level the eigenfunctions of all other
states are somewhat transformed (although their energy levels remain sta-
ble). In Fig.1 [11] the transformation of an oscillator potential by 50 potential
peaks and 51 partial wells which shift the 50-th energy level up is demon-
strated . It is remarkable that the lower states are almost not perturbed
in spite of a strong potential transformation (they coincide with the initial
bound state standing waves on the PC screen as is shown in Fig.1). Only very
high, near the 50th level where the oscillations of the perturbation AV (z) are
”in resonance” with eigenfunction oscillations, there are more visible changes
in bound state wave functions.

Besides the energy levels E) there are other fundamental parameters,
namely, spectral weights ¢y = ¥ (0). They play the part of levers controlling
the space location of corresponding states [1,5,7].

To move states in space, the universal and elementary building block
(7brick”) of potential transformations is a combination of one partial well
and one barrier for every bump, see for the simplest example Fig.2 how the
ground state is gathered to the origin for the initial infinite rectangular po-
tential well [1,5,7,12]. For the motion to the right (left) the barriers should
be from the left (right) side of wells. To move the Nth state AV (z) should
possess N barriers and wells. During the motion all knots of the chosen state
remain fixed in space. Only the distribution of bump sizes changes. And there
is some recoil of all other states (tendency to separation of the chosen state
from other ones). For very big (small) values of ¢ the last (first) bump in
the chosen state can move far to the right (left) or be pressed into the infinite
vertical potential wall that restricts the motion.
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Fig. 1.

Fig.1. Initial oscillator potential well was perturbed to shift up only the 50th
energy level by 50 peaks at the positions of bound state wave bumps and 51 partial
wells near its knots to keep all other levels exactly at the previous places [11]

The universality of these rules manifests itself both in creation of new
states (energy levels) and in destruction of any chosen level of the initial
spectrum. In the limit ¢y_¢ or 400 there is effective annihilation of the state
running to infinity or pressing into the infinite wall. Analogously, the creation
of a new state (level) can be considered as being effectively brought from
400 by the potential perturbation with a relevant number of bricks. We can
imagine in this case that this state is "returned after its removing” according
to the above rules.

Our rules of the chosen state motion are valid even for gathering scatter-
ing states into bound states embedded into the continuum spectrum (BSEC)
[10,13]. In this case an infinite number of these AV (z)-bricks are naturally
needed.

The same rules are applicable for variation of parameters of resonance
(quasibound or decaying) states.

The qualitative theory of spectral control for waves on lattices (discrete
quantum mechanics) and in periodic potentials was considered by us in [1,2].
In particular, there were investigated: spectral inversion, upside down barriers
and wells, minimal nonlocal corrections to discrete soliton-like potentials to
make them reflectionless, allowed and forbidden spectral zone managements.
This theory can be useful for understanding the features of interchannel mo-
tion (over the discrete variable numbering mixed configurations).

Algorithms of spectral lacuna creation (tearing off or splitting continuous
spectra at a relevant energy) were elaborated in [1.2].

3 Spectral Management and Multichannel Peculiarities

The system of coupled Schrodinger equations has the form:
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s

Fig. 2a.

Fig. 2b.

Fig.2. Gathering at the origin of the ground state wave function by increasing the
spectral weight cground = Ygrouna(0) in the initial infinite rectangular well: a) wave
functions, b) the potential. See the two-channel analogue of this phenomenon in
Fig.3

—¢7'(2) + 225 Vis(2)¥5(2) = Eitu(2) (1)

where the channel waves () are the components of a wave vector, E; =
E — €; with the threshold energies ¢;.

Figure 3 exhibits the genuine multichannel phenomenon when by increas-
ing only one ith component of the spectral weight vector (SWV) ¢y; =
¥;(0, E,) all other channel wave functions v;4;(x, E)) are partially trans-
ferred to the sth channel. The exact formulae that we have used here and in
what follows have been given in [14]. It is a result of the channel connection
("as in communicating vessels”). So, the waves are gathering not only in the
configurational, but also in the channel spaces. In the limit |ex | — oo all
components are completely sucked out by the chosen ith channel where they
are pressed to the origin.

In the one-channel case in the limit ¢y — 0 the corresponding bound state
¥a(z) is pressed into the opposite (outer) potential wall. If ¢ (a) — 0 on the
right boundary & = «a, then ¢,(z) is pressed into the outer potential wall.
Unlike this, in the multichannel case the vanishing of partial |c) ;| does not
lead to pressing of the corresponding wave into the opposite wall. The wave
is only partly shifted to the opposite wall and partly transferred (squeezed
out) into the other channels. This is shown in Fig.4

In the process of variation of the spectral weight vector (SWV)-compon-
ents there can (dis)appear knots in contrast with the one-channel case. This
can be seen in Figs.3 and 5.
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W

= Fig. 3.

Fig. 3. Transformation of the components of the two-channel ground bound state
wave function in the initial infinite rectangular well
(1;11 (z) :&22 (z) = 0;‘;12 (z) = —0.3;[0 < z < II] by a strong increasing of
the derivative of the second component ¥x=12(0) at the origin z = 0. As in the
one-channel case, the wave ¥x=12(z) is gathered to the origin, but also the first
one 1x=1,1(z) is partly transferred into the first channel. There appears a knot in
¥a=1,1(z) (see also Fig.5)

L.

Fig. 4.

Fig.4. Transformation of the components of the two-channel ground bound
state wave function in the initial rectangular well of infinite depth
(1311 (z) 2&22 () =0 1;12 (z) = —0.3;[0 < & < P1] by making zero the derivative
of the first component ¥{(a) on the right boundary « = a. In contrast with the
one-channel case, the wave is not only slightly pressed to the opposite wall but also
is partially transferred into the second channel

In the one-channel case we have found [4] the effective annihilation of
two states when they approach one another (in the limit of degeneration
of the levels). Unlike this, there is the allowed degeneration of M linearly
independent bound states for M channels. By analogy with the one-channel
case [4] there is the phenomenon of annihilation of degenerating bound multi-
channel states with linearly dependent spectral weight vectors.

Fig.5. The appearance of a knot in the second component Pa=1.2(z) of
the ground state (A = 1) wave function when the derivative of the sec-
ond component ¥),(z) at the origin changes sign (from negative to posi-
tive). The initial interaction matrix elements are infinite rectangular wells with

Vis (z) = —0.3, Vi1 (z) = Vao = 0.3, [0 < z < Pi]. See also Fig.3
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As an example, we here consider the two-channel system with the rectan-
gular interaction matrix of finite depth with Vi; = Vo = const [0 < z < 4]
and achieve the degeneration of bound states by decreasing the channel cou-
pling Vi2 — 0. We have chosen equal SWV ¢ 1 2 for two lowest states. In
the process of approaching the levels, their bound state wave functions are
divided into two parts one of which is going to infinity when Vis — 0.

Rudiments of annihilation phenomena can be seen (Fig.6.) if we gradually
change the SWV of the ith state whose energy is near some other (i+1)th level
approaching ¢y ; — ¢y ;11 without shifting energy levels themselves. Similar
states began to ”break” in two pieces one of which has the trend to move away
(the further the closer together are the levels). At the ”crossing” point of ¢, ;
with ¢y ;+1 there occurs the "flip” (change of sign) of the repulsed (right)
parts of the wave function components. The left bumps of the components
do not change so much being fixed by given values of their derivatives (SWV)
at the origin. So, Fig.6 also demonstrates the incompatibility of degeneration
of states with the same SWV.

w

w,

Fig. 6.
x ¢

u,

Fig. 6. The effect of ”intolerance” of states which are close to each other in spectral
parameters (energy levels Ey = E3 and similar SWV). The components of one func-
tion (of the two-channel ground bound state) are shown for the finite rectangular
well interaction matrix. Pay attention to preparation of the effective annihilation of
the ”extra” state: the wave bumps on the right are teared off the original standing
wave and pushed to the right (in the limit of degeneration and equal SWV these
bumps are shifted to infinite x)

Consider a simple model of degeneration of three two-channel states which
can be explained by one-channel analogies. The initial system consists of two
uncoupled channels with infinite rectangular potential wells with different
heights of their bottoms Vi; = 0, Vo5 = 3. Linear combinations of the second
state in the first well and the lowest state in the second well give two degener-
ated states with the energy levels F'y 3 = 4 and orthogonal SWV. The initial
ground state with £y = 1 and ¢y=;1 2 = 0 consists of the one-channel ground
state in a deeper well and zero second component. The approximate triple
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degeneration is produced by approaching F; to Es3 = 4 with fixed SWV
and cx=1,2 = 0 so that the second component of the ground state remains
zero and the channels remain uncoupled. All changes occur in one well Vi
(in one channel as in [4]). The eigenfunction components in the first channel
are teared into two pieces one of which (the right) is pressed to the right
potential wall as in the ordinary one-channel case (preparation to effective
annihilation). The left bumps are stabilized by fixed SWV values. Let us now
increase cy=1,2 from its initial zero value to 1. This requires the wave transfer
between channels. So, Vis(2) appears to suck out some wave from the first
channel as is shown in Fig.7. It has a big right side at the place of the right
wave bump prepared for annihilation in the first channel. The shape of Va5(x)
provides the shift of the received wave to the left to make ¢x=12 = 1. The
interaction matrix element V11(z) has a barrier and a well which have pressed
part of ¢a=1,1(x) to the right wall.

W, Vi

w, v,

Fig. 7.

Fig.7. Two-channel wave function components of the ground state (a), and inter-
action matrix elements (b, c, d) by approximate triple degeneration of three lower
states. The initial system has uncoupled infinite rectangular potential wells with
0 0 0

different heights of their bottoms V1,=V;;= 0,V2;= 3 and exactly degenerated
second and third states. In the initial ground state SWV 2A=172= 0. The initial
system is transformed by lifting the ground state level up to neighboring exited
states: £1 — 3.9, and making ca=12 = ca=1,1 =

It is well known that in the one-channel case the absolutely transparent
potential is a soliton-like well and necessarily has one or more bound states.
What could be expected when we transit from the one- to multi-channel case
for transparent systems? It could seem that to the single-channel soliton-like
potential there should correspond the interaction matrix with the soliton-like
elements. Really, it is so in the case with identical thresholds in all channels.
But in the general case there appear unexpected barriers in the interaction
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matrix which are necessary for the reflectionless motion of waves [2]. Recently,
we have obtained new classes of absolutely transparent multi-channel systems
through the multi-channel generalization of SUSY transformation. Among
them there are interaction matrices without bound states, which is impossible
for one-channel systems (except the trivial case of free motion).

In Fig.8a an example of the two-channel interaction matrix reflectionless
at any energy is shown without creation of a bound state. This resembles
the picture of the absolutely transparent potential matrix bearing one bound
state (Fig.8b) derived for the first time by the inverse problem technique
in [5]. The difference is that in Fig.8a there is no potential well in the first
channel, which results in the absence of a bound state. The SUSY-derived
potential matrix without bound state depends on parameters €,m;,m, at-
tributed to creation of the nonphysical state with the prescribed increasing
asymptotic behavior.

Fig.8. Interaction matrix for a two-channel absolutely transparent system with
different thresholds of channels: a) without and b) with creation of a bound state

A standard situation is when for the short-range interaction matrix V;; (z),
different channels become disconnected at large distances and solutions there
are combinations of the corresponding free waves. But even the weak cou-
pling Vj;(z) can suck out remaining waves from some open channels into
other ones violating the standard asymptotic picture. For example, there can
be an exponential decreasing function in the open channel. This happens
for the multi-channel transparent interaction matrix when the wave incom-
ing in one ”¢”-channel is distributed at first between other channels in the
interaction region but then is concentrated again in the ”o”-channel. This
unnatural asymptotic disappearance of the wave in the open channel (which
is unexpected because the motion there is not explicitly forbidden ) due to
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the coupling of channels even for rapidly decreasing AV;;(z) is remarkable
multichannel feature.

One of the wonderful possibilities of IP and SUSY transformations is
the creation of bound states embedded into continuum (BSEC), see [1,7,13]
and references therein. The corresponding standard one-channel potentials
and BSEC wave functions have long-range oscillating tails (decreasing with
r as ~ 1/r). Examples of short-range multichannel interaction matrices with
BSEC below some threshold energies were considered in [7,15].

Now we have understood that it i1s of crucial importance for the con-
struction of multichannel BSEC whether the spectral weight vector of the
initial system without BSEC at the energy of creation of BSEC is changed
by a scalar factor or different components of the vector weight are changed
non-proportionally.

If the creation of BSEC does not violate the ratio of spectral vector com-
ponents, then the transformation caused by the scalar factor in SWV does
not hinder the cancellation of increasing waves in linear combination of regu-
lar solutions in closed channels under the integral in the denominator of the
created state

()
258 Pap (¢, F)

Wa(l‘, E) = o 2
14+, Jo Dopcp @ap (v, E)) dy

, 2)

where doiaﬂ (z, E) is matrix of the regular solutions of Schrodinger equations

[}
with initial Vg (2) and obeying initial conditions

%a,@ (O,E) =0, dii:; %aﬂ (:L' = O,E) = 5015; €1 < E < es.

The denominator grows not faster than linearly with x. An example of
such multichannel BSEC systems is shown in Fig.9. In the general case there
appears an exponential suppression of BSEC wave functions and the interac-
tion matrix.

We can predict that multi-BSECs will have properties analogous to the
one-channel case of approximately linearly dependent and almost degenerated
states and transformations caused by changing the spectral weight vector of
one state by a scalar factor. But there are additional degrees of freedom of
the independent variation of separate SWV-components.

We have considered the degeneration of one-channel BSEC states [18] and
have.

In general, for M-channel equations it is possible to degenerate M BSEC
with independent SWV and we expect annihilation of BSEC with linearly
dependent SWV.

The system of coupled Schrodinger equations (1) can be considered as
one equation for the function %;(z) of two variables: the continuous space co-

20

ordinate ”x” and discrete index ”i” numbering the channels. The algorithms
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Fig.9. Two-channel interaction matrix V;;(z) and components of wave function
ST/I’”(EBSEC,:L‘) for a bound state embedded into continuum spectrum (BSEC)
between channel thresholds. This is a special case of the creation of BSEC by
transformation of the SWV of the initial system by a scalar factor. Pay attention
to the slowly decreasing potential and eigenfunction asymptotic tails in the open

channel (V11(z), ¥1(z)). The initial square well interaction matrix I;“ is also shown

of qualitative spectral, scattering and decay control for one-dimensional one-
channel systems were elaborated by us separately for continuous and discrete
variables [1,2]. The spectral management of (1) can be considered as a com-
bination of these algorithms. In particular, in the simple two-channel case
Vii(z) = Vaa(z); Via = const when the system (1) can be separated in two
uncoupled equations for ¥4 (x) = ¥;(z) & ¢;(z), we have found that the
spectrum of (1) consists of multiplets of levels whose average positions are
controlled exactly by the rules for continuous variable ”x” and the position
of levels inside the multiplets relative to their center can be managed by
prescriptions of the discrete quantum mechanics [1,2].
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The theory of qualitative quantum design [1-4] was based on freedom of
considering not only real objects but all possibilities of the construction of
quantum systems by arbitrary variation of independent spectral and scatter-
ing parameters. In the multi-dimensional case there appear additional con-
straints on the initial data of IP to except the extra variables in comparison
with the number of variables in the potential. This excludes also the possi-
bility of existence of exactly solvable models {1]. But including the potentials
being nonlocal in part of variables allows us to get an equal number of vari-
ables in potential and spectral (scattering) data. In this case we again, as in
one-dimensional space, obtain complete sets of exactly solvable models with
independent spectral parameters. In principle, our investigations of multi-
channel quantum design is just the consideration of a convenient represen-
tation of such systems with nonlocal interactions (finite interaction matrices
correspond in general to nonlocal potentials [1]).

Local potentials are a particular subset of nonlocal ones. So, we can ap-
proximate local systems by nonlocal models.

The unified theory of reactions suggested by Feshbach was generalized to
arbitrary rearrangements of particles [16] and later this new formalism was
used for a principal solution of the three- (and more) body inverse problem
[19].

The multi-channel coupled equations can be treated as equations in dis-
crete (numbering channels) and continuous (x) variables. The nondiagonal
elements of interaction matrix V;;(z) represent the nonlocal interchannel cou-
pling. Algorithms of spectral control are combinations of the corresponding
rules separately for the wave management on lattices and in ordinary spaces.

Here it is very interesting to consider finite-difference Schrodinger equa-
tions of an order higher than 2 [1,2] (with multidiagonal Hamiltonians). There
appears the phenomenon of spectrum folding and problems of control the
number, positions and widths of the branches of spectra. It is worth men-
tioning that the potential nonlocality in discrete quantum mechanics has
much in common with the effect of the corresponding difference operators
and this makes discrete models a very convenient tool to elaborate quantum
intuition concerning the nonlocality and interchannel coupling.

An analog of the two-spectrum theorem for the one-channel case is the
M-+1 spectrum multichannel theorem [1,2]. It would be interesting to consider
the possibility to generalize these theorems to the wave motion on the half
or the whole axis x including nonphysical (not L) eigenfunctions.

The inverse scattering problem for coupled channels with the modified
Newton-Sabatier method (E=const approach) was considered at this Confer-
ence [17].

SUSY gives often new results in comparison with IP. Below we shall give
the main formulae of exact multichannel models in the SUSY approach. They
may be useful because we have not seen them in such a clear form.
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4 Multichannel SUSY

In this approach the hamiltonian in Eq.(1) on the whole axis is represented
in a factorized form

H_=AYA= 4¢ €<0 (3)
where ¢ is the so-called factorization energy. The operator A~ has the form

- d .
A :—EE"{'W(Z‘), (4)

where W(z) is a matrix to be found. The operator A* is the hermitian
conjugate of A~.

For definiteness, consider the case of two channels only. Furthermore, let
the initial potential matrix V;;(z) be identically equal to zero on the whole

axis. Let ¥ (z) be a matrix solution of the Schrodinger equation at the energy
¢ (H_¥(z) = e¥(z)). In particular, we can take

o) = (e i), )
ki = \/€; — €. We can easily obtain W(x) from the equation
AW(z) =0, (6)
arising from the definition of ¥(z). So, we have
W(x) =0 (2)¥(z)"". (7

Using (5) we rewrite this expression

W( ) 1 —Kk1mie~F1% gicre® caef2®  —cief1®
z) = ——— _ _ ke | =
det(z) \ —K2mae k2% gocqef2® —mae 2% mye= ¥
—Kl[mlcze("@_"l % pmgcy el51752)2) 2K1c1mMy
m1C26(K2—K1)I—7n2C]6(K1_K2)I mlcge('ﬁ"‘l)x——mgcle("l_"2)‘T (8)
—2KyCpmy ralmaciel¥1772)8 L cpeliz—r1)2] |-
mlCQe(K2_K1)I—mzcle("l_"2)"‘ mlCQe("2_"1)I—m2cle(K1_K2)~"7
For W(z) to be hermitian, one should put ¢y = —cymi&1/koms. Then (c; is
) 2

canceled in the numerator and denominator):

W(z) =
2 - 2 —
Kl[mzﬂze(m Kz)a-‘_.mL,gle(ﬁz ﬂl)z] _ 25 my KoMy
m%ﬁle(’ﬂ‘""l)I+n1352e("1_"2)$ m%;{le("2—ﬁl)I+mgn2e("l_"2)x

o _ . (9
2K1M1 KoM ”52[mf516(n2 hl)$—7ngﬁ2e(K1 Kz)‘r] ( )

m2r1eR27R)T 4 m2 Ry e(F1=R2)T 2y (R K17 2 gp (K1 —R2)w
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The SUSY transformation itself is the permutation of operators A~ and

At in (14). So, we get the transformed hamiltonian (supersymmetrical part-
ner of H_)

Hy=A"A* 4 e=H_ - 2W'(). (10)

It is easy to see that vector-column solutions of the Schrédinger equation
with H, have the form

¢+($,E):A_¢_(£,E). (11)

Furthermore, it can be shown that these solutions have the same asymptotic
behavior as the unperturbed ones, in other words, SUSY transformation does
not change characteristics of the continuous spectrum (the reflection matrix
remains unchanged and equals to zero identically). Unlike the one-channel
case, the expression f/(a:)_l is not a solution at energy €. Nevertheless, we can
obtain four linearly independent vector-column solutions via formula (11), i.
e. by the action of A~ on four linearly independent solutions for the initial
hamiltonian H_ at E = e. Tt appears that the choice of ¥(z) (5) corresponds
to the case when the construction of a linear combination of the vector-
column solutions with exponentially decreasing asymptotic is impossible. So
we see that the bound state at energy ¢ is not created. We have a nontrivial
potential transformation without affecting spectral characteristics. Of course,
the choice of matrix solution (5) is not unique. This matrix may be composed
of any two linearly independent vector-column solutions corresponding to the
initial hamiltonian H_.

5 Conclusion

Hilbert once said that physics is too difficult for physicists. Maybe, Gell-Mann
and Einstein expressed the same idea when they called quantum mechanics
the ”anti-intuitive discipline” and ”bewitching calculus”. But besides this
there is a strong tendency of science simplification. There was a permanent
remarkable growth in old good quantum physics from the very beginning.
And one of the main points of the growth was the IP and SUSY theory.
The exact models, some of which we have considered here, bridge direct
and inverse problems, which will give us in future the renewed and unified
quantum mechanics. The qualitative theory of Dubna school of the inverse
problem is our contribution to enriching the algorithms of quantum intuition
[1,2,7].

Quantum physics has already done very much for the progress of mankind.
We expect from it much more in the future (the radical solution of energy
problems, fantastic achievements in quantum electronics and due to them per-
fect technologies etc.). Now everybody knows the importance to save natural
environment, but much more care i1s to be paid to our spiritual (informa-
tional) environment.
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There are about 5 10° people on the Earth now. This means that there are
about five million tons of brain matter. This is the most valuable thing (in-
comparable with oil, gold, etc. for which people so often involve one another
in wars). But we treat this treasure nonrationally. Only a negligible part of
this matter has satisfactory access to information which can tremendously
increase creative power of the Earth population (millions of virtual Newtons,
Lobachevskiis, Chaikovskiis . . .).

Of course, every kilogram of the brain matter is egoistic, this is natural
as well as the fact that we always retard relative to our contemporary possi-
bilities. But egoism can be primitive (short-range) or clever (long-range). In
the limit of global radius, egoism coincides with altruism that is really the
most profitable strategy for everybody. Through possibilities of computer net
connections of every person with another the mankind can sooner and deeper
learn this truth. With memory elements of molecular size one quantum com-
puter diskette can contain all what was written by people during the whole
worlds history. This means that our quantum business helps us to make life
on our Planet more spiritually comfortable, clever life.
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Ambiguities in Inversion Potentials
for Light Nuclear Ion Scattering
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School of Physics, University of Melbourne, Parkville, Victoria 3052 Australia.

1 Introduction

Understanding the nature and specifics of the potential energy of interaction
between two colliding quantum systems, be they of nuclear, of atomic or of
molecular type, 1s central in almost all studies of their possible reactions.
Conventionally, elastic scattering data is used as a measure to assess the pro-
priety or no of any candidate form one may specify for such (non-relativistic)
interaction. Invariably also one considers that interaction to have local form
which however may be complex and/or energy dependent.

There are two basic approaches by which quantitative information on the
(effective, local) interaction between colliding quantal systems may be sought
from measured, elastic scattering data. The first is the direct approach in
which either a form for the interaction is assumed or its radial variation is
determined by folding underlying component interactions with the density
profiles of the colliding systems. The result is then used in the Schrodinger
equations to specify the relative motion wave functions for the system. From
those solutions, phase shifts are extracted and thence, by standard sum-
mations of Legendre polynomials, observables such as the differential cross
sections are predicted. Frequently the procedure is modified to a numerical
inverse method by adjusting values of parameters in the chosen form seeking
a result that ‘best fits’ measured data[1].

Alternatively one can use global inverse scattering theories [1] with one of
many methods of solution to determine candidate interactions from S func-
tions (phase shifts) that have been determined by a (quality) fit to measured
data. In so doing, there is essentially no a priori assumption made about the
shape of the ‘inversion’ potentials. However, they are clearly linked to the
chosen method of implementation, i.e. as one uses the Lipperheide-Fiedeldey,
Newton-Sabatier, Marchenko or Gel’fand-Levitan equation to name a com-
mon set.

With either approach, central in the procedure is the scattering function,
which for energy E(= h%k?/2p) is given in terms of the phase shifts by

S(\, k) = e?ie(k), (1)

when the angular momentum variable () are the real values [ + 1, as such
gives the link
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do
{E} < S\ k) o V(rE) (2)
Therein there are two possible spectral parameters, the energy and the angu-
lar momentum. But almost all studies, direct and inverse, have fixed one or
the other. With inversion methods the fixed A — variable energy approaches
have led to new insights about the two nucleon interaction. But most experi-
mental results suggest use of fixed E - variable angular momentum schemes.
Typical data are differential cross sections measured at a single energy and
for a set (often incomplete) of center of mass scattering angles. Such fixed
energy data and their analyses are the subjects of this article, with particular
emphasis placed upon the problems of the links between data and the inver-
sion interactions via the S functions. The key problem in assessing a quantal
scattering interaction is the definition of the physical S function. There are
problems with the link between that physical S function and the interaction
whether a direct or an inverse process is used. But it is worth noting that
once the S function in the form suitable for use with an inversion method
has been chosen, then the resulting potential is unique (to within any phase
equivalent condition such as yield the so called ‘transparent’ additions or
super-symmetric partners). With inversion schemes, the process of choosing
the S function for a continuum of angular momentum values is ambiguous
however. But equivalent ambiguities are present with analyses using direct
methods in so far as the parametric specification is always ambiguous. Worse
the direct process locks one into an a priori choice of form for the interaction;
a choice that often has limited physical justification.

2 The process g% = S(A)

Consider the differential cross section of elastic scattering which, with ¢ being
the scattering angle (k; - ky), is defined in terms of a complex, scattering

amplitude by
o(0) = 55(0) = 15O 3)

That scattering amplitude will be taken as
1(6) = /o (9) ¥ (4)

and in a partial wave expansion (with Sy = Sy(k) = e2#%())
[
f0) = ;fl Pi(0) = %:(25 + 1) g 19 = 1] Pu(6) (5)

whereby, if one can specify the phase ¢(6), and have the cross section at all
scattering angles, then the S function at the physical values (£) of the angular
momentum variable A(= £+ %) are
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™
Se=1+ lk’/ f(0)Pe(6)sin(8)ds. (6)
0

This process seems of little value — indeed it is of none if the phase cannot be
specified. We consider such questions further in another contribution to this
issue wherein the constraint of unitarity is used to specify a nonlinear equa-
tion for that phase function and a method of solution specified and applied
to both nuclear and atomic scattering data. But there are also uncertainties
with any process of defining S; due to problems with the data sets, some of
which are

(1) (large) statistical errors
(i) systematic errors (both known and unknown), and

111 incomplete data requirin interpolation and extrapolation for § = 0° to
g
180° .

Of these, treatment of the systematic errors of data sets has been found to
be particularly important in establishing what is and is not a statistical fit
to that data set [2]. These matters are considered in brief in the next section.
In addition there are ambiguities in the construction of the fixed energy S
functions (or equivalently the phase shifts), some of which are

(1) layered ambiguities (6, — 6, + nm)

(ii) window ambiguities (limited data sets)
(ii1) unknown bound state influences in S(A), and
(iv) phase symmetry condition (¢ — 27 — ¢)

Such problems, and those created by loss of unitarity of the S function due
to flux loss to other reaction channels, mean that functional forms for S(X)
are taken usually. Therewith one also has the ambiguity of construction that
is the prime consideration of this paper. The choice of S function form then
is based upon its utility in effecting the inversion process. S functions having
rational function form, viz.

sty = armeceit [T =2 @
—

where 7 1s the Sommerfeld parameter, are particularly useful and are required
for use with both the semi-classical WKB and fully quantal Lipperheide—
Fiedeldey inversion schemes that have been of primary interest to us with
analyses of electron—molecule, atom—atom and nuclear scattering cross sec-
tions[2].
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3 Treatment of errors in data

The quality (and extent) of data is crucial in the determination of an S
function. Such is reflected by the size of the statistical uncertainties with the
quoted experimental values, by unknown systematic errors of any experiment
and by known systematic errors such as the exact angle and acceptance of
detectors. There is nothing a theorist can do about the count rates and the
attendant statistical error but there are various techniques one may consider
to estimate the effects of the systematic errors in defining S functions [2].

Smoothing splines provide ‘nice’ curves by which discrete noisy data
can be smoothed and a particularly suitable process for smoothing cross—
section data is that of generalized cross validation (GCV')[3]. Allowing that
a measured N point data set consists of a smooth physical result plus white
noise, the GCV process 1s a trade off between fidelity to the quoted data set
(chisquare per data point, x?/N) and roughness of a selected (2m — 1) degree
smoothing polynomial spline. That roughness is measured by the integrated
square of the m'" derivative of the smoothing spline function. The end re-
sult is a new table of data (at the same scattering angles) whose differences
from the original values one might consider to be an estimate of unknown
systematic errors.

Even so, that does not guarantee that a new ‘data set’ will result against
which an S function can be found to produce a fit of statistical significance;
i.e. one for which the measure, chisquare per degree of freedom (x?/F; F =
M — N) of the fit with N adjustable parameters and M data points, is of
order 1.

In finding high quality fits to extensive cross—section data sets, one must
consider also the known systematic errors and for differential cross sections
that is usually an uncertainty with the angles at which the detector has
been placed. We have taken such into account in a very simple manner.
Specifically we have allowed each quoted experimental value to correspond to
an angle in the range around the tabulated number. For heavy ion scattering,
typically that angle uncertainty is 0.1°. In a case studies recently, by ‘angle
shaking’ each and every quoted experimental result, a relatively poor fit to
the quoted cross section from 12C-12C scattering at 250 MeV actually became
a statistically significant one to the ‘angle shaken’ values[2].

4 The nuclear isospin potential

That the interactions between nuclel are isospin dependent has been known
recognized since the symmetry energy term in the Bethe—Weissacker semi—
empirical mass formula was established. Such a potential may be expressed
by

V(r) = Vo(r) + Viso(r)[mp - 7] ,
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wherein 7; are the isospin operators for the projectile (p) and target (t)
respectively. Analyses of scattering data from isobaric systems enable us to
estimate both Vy and Vis,. Herein we report on such analyses of the cross—
section data of Dem’yanova et al. [4] and for the systems 3He from '4C at 72
MeV and 'C from 3H at the matching energy of 334.4 MeV. With potentials,
Vii/te(r) determined from fits to the separate differential cross sections, the
central and isospin components follow from

1
VH/He(r) = aVO(r) + 'Q‘Viso(r) .

We have analysed these cross section data using both the global inverse
method of Lipperheide-Fiedeldey (hereafter abbreviated as LF') and the nu-
merical inverse method of a conventional optical model (OM) approach. In
the LF approach, first we must ascertain S functions of the form,

N )‘2 . /32
SO = Srer(N) [ (Az—_ag-) :
n=1 n
from fits to the data. The reference S function we took as
Sref(’\) = ¢ m(AT4A)

where 77 1s the Sommerfeld parameter. Thus, with N complex pole/zero pairs,
A defines a (4N + 1) parameter set for the S function. Both the 118 data
points from the *C—3H reaction and the 56 data points from the 3He-'4C
case were fit by using 21 parameter S functions giving, after the application
of both the GC'V smoothing and ‘angle shaking’, fits to the measure of 8.87
and 1.31 for x?/F respectively. The quoted experimental uncertainties were
used in these analyses (not the typical 10% values usually considered in most
studies) and an angle uncertainty of 0.1° was assumed for each datum as those
were not quoted in the published results[4]. Of the ‘smoothing techniques’
used with our analyses, angle shaking had the most dramatic effect. But it
did not suffice to bring the analysis of the data from the radioactive beam
experiment (the 1*C—3H scattering) to have a statistically significance, i.e.
to have x?/F ~ 1. But we note that one or two points give most of the
contribution to the total value of x? and if one may ignore them, then the
result is very good. That is evident from the cross sections shown in Fig. 1.
Therein the dashed curves give the best fits we have obtained to the GCV
and angle shifted data using numerical inverston. The conventional complex
OM potentials were used in those studies. With Woods-Saxon (W S) forms
for the central real and imaginary attributes and a derivative WS form for a
surface absorption term, the 10 parameter models gave fits that had values
of 22.8 and 13.7 for x?/F. Note those values reduce to 3.41 and 1.94 if we
allow 10% errors, as is often used in analyses instead of quoted experimental
uncertainties.
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The inversion potentials, in central and isospin form, are given in Fig. 2.
The results obtained with the two approaches are quite different. The LF
method has led to relatively weak refractive and even weaker absorptive in-
teractions for both elements. The OM results, in contrast, give a weakly
absorptive but strongly refractive central interaction and a repulsive, essen-
tially real isospin component. But the quality of fit with the two approaches
are not sufficiently similar, with only the LF method resulting in a fit of
reasonably small error measure.

0 50 100 150 200

do/dQ (mb/sr)
)

0 20 40 60 80 100
6. (deg.)

Fig.1. The differential cross sections from the scattering of 334 MeV C ions
from *H (top) and from 72 MeV ®He ions from '*C (bottom) compared with fits
by using the LF inversion potentials obtained from the rational S function forms
(solid curves) and with those from optical model calculations (dashed curves).

The situation is different however with our analyses of some new data
from the scattering of “Li ions. They are presented next.
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Fig. 2. The central and isospin potentials obtained from the LF inversion studies
{(bottom) compared with those obtained from the optical model analyses (top).

5 The LF-OM ambiguity — 350 MeV 7Li—*C and
"Li—%Si Scattering

In a recent publication [5], Nadasen et al. present high quality data from the
elastic scattering of 350 MeV “Li ions off of 12C and 28Si to complement
those they had measured previously at lower energies. They have analysed
their data by numerical inversion with the standard OM approach finding
what they term ‘unique’ OM potentials. The terminology is unfortunate even
within the subclass of interactions of the OM approach. More to the point
though, their high quality (*2C) data can be fit with both the LF global and
OM numerical inversion methods and with comparable good fit measures.
With the LF procedure, we have found excellent fits to the 350 MeV data by
using 5 and 9 pole/zero pairs for the 12C and 28Si cases respectively. Likewise
an excellent fit to the '2C data has been found with the OM approach.

The cross section from the scattering of 350 MeV “Li ions off of 12C is
shown in Fig. 3. wherein the data are compared with the result (solid curve)
of using the LF' inversion potential to solve the Schrodinger equations for
the scattering. The fit is excellent having a total x? value of 50.1 and is
therefore statistically significant as y2/F is 0.98. A similar, very good, LF
inversion result has been obtained with the “Li-**Si data (x?/F = 1.01).
But only with the '2C data have we been able to find such a quality fit by
numerical inversion. With a 7 parameter model consisting of a central real
and imaginary WS form plus a Coulomb radius, the '2C data has been fit
with an end value of yv? of 69.4 and so x2/F of 1.07. For the 28Si scattering,
our best OM result has x2/F = 7.17.

The S functions with which we find the best fits to the 350 MeV scattering
data, are presented in Fig. 4. Therein, the phase has been plotted modulo 7,
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Fig.3. The differential cross section from the scattering of 350 MeV "Li ions off
of 2C compared to the result calculated from the LF inversion potential. On this
scale the OM result is indistinguishable.

ISI

sl bl

Fig.4. The S functions for 350 MeV "Li on *?>C and ?*Si. The LF and OM results
are displayed by the solid and dashed curves respectively and the phases are plotted
modulo .

hence the vertical segments shown. The solid curves portray the LI results
while the dashed curves are the OM ones. Clearly the rational forms of the
S function from the '>C fit is quite different to that from the OM study.
The LF result is very structured with |S| being large, > 0.5 in fact, for all
small partial waves. The LF and OM results from our analyses of the 23Si
data, in contrast, are quite similar and tend to the strong absorption model
form. The variations in the S functions reflect in striking differences between
the inversion potentials as is evident in Fig. 5. The top row contains the LF
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Fig.5. The LF and OM potentials from the fits to the "Li scattering cross sections.
The real and imaginary parts of the potentials are shown by the solid and dashed
curves respectively.

inversion potentials, Viny(r), for each system, while the bottom row shows
the OM results, Vom(7). In each case, the solid curves portray the real parts
of the potentials while the dashed curves give the imaginary parts. A standard
notch test revealed that the minimum radius of sensitivity is approximately
2 fm, hence the lower limit in the abscissa.

The differences between the LF and OM results are quite evident, and
especially so for the 12C scattering. But it is to be recalled that both in-
teractions, when used in solving the scattering Schrédinger equations gave
statistically significant fits to the data. Clearly some a priori bias has to be
used to ascertain which is the most ‘physical’.
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Abstract. The one-dimensional coupled-channel Marchenko equation in the pres-
ence of thresholds is derived. Various aspects of this equation are discussed and a
numerical algorithm for its solution is proposed. The efficiency of the algorithm is
demonstrated using simulated scattering data.

1 Introduction

The inverse scattering problem on the line (i. e. in one dimension) has been
formulated long ago (see, for example, Chadan and Sabatier (1982) and
Calogero and Degasperis (1982)). Although its formal solution has become
textbook knowledge, it is only recently that generally applicable and reliable
numerical methods for solving it have been developed (Corvi (1992), Sacks
(1993), Lipperheide et al. (1995a), Lipperheide et al. (1995b)). This may be
attributed to the lack, so far, of a sufficiently complete set of scattering data
to be used as input. In particular, the ‘phase problem’; i.e. the abhsence of
information on the reflection phase, which is needed in addition to the re-
flectivity, has prevented the practical application of one-dimensional inverse
scattering formalism, so that there was no urgency in developing viable nu-
merical methods. Thus, the few one-dimensional inversions performed up to
now in applications were concerned with model problems (Lipperheide et al.
(1996)), or used parametrizations of the complex reflection coefficient which
were fitted to the data (‘phaseless inversion’) (Pechenick and Cohen 1981, Jor-
dan and Ladouceur 1987, Jordan and Lakshmanasamy 1989). However, in
recent years the phase problem has received an increased attention, and var-
ious methods for obtaining empirical phase information have been proposed
(Sivia et al. (1991), Fiedeldey et al. (1992), Gudkov et al. (1993), Majkrzak
and Berk (1995), de Haan et al. (1995)).

In comparison with the single-channel inverse problem on the line, the cor-
responding coupled-, i.e. multiple-channel case has received less attention. Its
radial counterpart in three-dimensional scattering has already been treated
by Newton and Jost (1955), Agranovich and Marchenko (1963) and, more
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recently, by Zakhariev and Suz’ko (1990, Chapter 5), and by Kohlhoff and
von Geramb (1993). The one-dimensional case on the line, in which we are
interested here, was considered by Wadati and Kamijo (1974) and Calogero
and Degasperos (1977). In that work the threshold energies are assumed to
be the same in all channels and set equal to zero. In such a case, the coupled-
channel problem reduces to a straightforward matrix generalization of the
single-channel inverse problem treated by Marchenko. When, however, ac-
count is taken of the existence of different thresholds, the problem becomes
considerably more complicated. This is due to the fact that the reflection
coefficient as a function of the incident momentum must be defined on a
2N=1fold Riemann surface, where N is the number of channels (cf. the work
of Weidenmuiller (1964) for the s-wave case in three-dimensional scattering).

The present work is devoted to the one-dimensional coupled-channel in-
verse problem in the presence of thresholds. The corresponding matrix form
of the Marchenko equation is derived and discussed in Sec. 2. This equation
1s solved in Sec. 3 for a simulated two-channel example. Section 4 contains
our conclusions. Some technical details of the algorithm used are given in the
Appendix.

2 The Marchenko Method for Coupled Channels

2.1 The Jost Solutions

The coupled-channel Schrédinger equation in one dimension has the form (in
appropriate units)

o? 9
——=+V(@)+E | P =kP, 1
(<505 + V) +£) ©
where V is a real symmetric N X N potential matrix with matrix elements
v, 4,J = 1,--+, N, € is a diagonal matrix containing the threshold ener-
gies €;, 1 = 1,--- N, @ is a matrix whose columns are formed by the N

linear independent solution vectors of (1), and k is the incident momentum.
We arrange the threshold energies ¢; in increasing order and set the lowest,
the ‘elastic’ threshold energy, equal to zero, €; = 0. We restrict ourselves
to potential matrices with finite support; this effectively includes potentials
which vanish more rapidly than any exponential (e.g. gaussian potentials).
Moreover, we assume that the potential does not support bound states.

If the potential matrix vanishes identically, V = 0, the solutions of (1)
are the free solutions exp(+iKz), where K is the diagonal matrix with

K*=k1-€. (2)

The matrix K is defined on the physical sheet of the Riemann surface for
the momentum variable k. This sheet has an (N — 1)-fold branch cut on the
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real axis on the upper rim of which the diagonal elements of K are defined

as follows,
V k2 — €5, k 2 ﬁ)
ki =< i€ —k?, k| < /€5, (3)
__\/kz_fj) kS—\/_E—]_,
forj=2,---,N and ¢; = 0.

In generahzatlon of the single-channel case we introduce the pairs of Jost
solutions F(k,z), Fy(k,z) and F_(k, z), F_(k,z), which are solutions of
(1) with the asymptotic form

hm exp(—iKz)F4(k,z) =1, liT exp(+iKa:)l~!"+(k,x) =1, (4)
r— 100

T — 400

lim exp(+iKz)F_(k,z)=1, lim exp(—iKz)F_(k,z)=1. (5)
r——00 r——00

Each pair represents a fundamental system of solution matrices.

The matrix F_(k,z) goes over into the diagonal incoming-wave matrix
exp(+1Km) for £ — —oo, that is, the Jost solution in the first column F_ has
an incoming wave with current den51ty k1 = k in the first channel and none in
the others, the one in the second column has an incoming wave with current
den51ty ks, only in the second channel, and so on. The Jost solution matrix

F_(k, z) therefore is the incoming component of the physical solution U(k,z)
for incidence from the left, to which we may add any linear combination of
the outgoing Jost solution matrix F_(k,z). On the other hand, in order to
satisfy the physical boundary condition for # — oo, the physical solution
must consist only of Jost solutions F (k, z). Therefore, we can write

@ (k, ) = Fy(k,2)T(k) = F_(k,z)R(k) + F_(k,z). (6)

In view of the asymptotic conditions (4) and (5) the matrices R and T are
recognized as the reflection and transmission matrices, respectively. A similar
relation holds for incidence from the right.

As in the single-channel case the Jost solutions have the Levin represen-
tations (Chadan and Sabatier 1982)

F.(k z) = exp(+iKz) + / " G (o, ) exp(+iKy)dy (7)
Bo(bn) = on(-iKe) + [ Gae.es(-iKndy,  ®)
P (b2 =op(-Ko)+ [ GGk, )
F_(k,z) = exp(+iKz) + /_ ; G_(z,y) exp(+iKy)dy . (10)

Inserting these expressions into (1) one obtains, after some algebraic manip-
ulations, the following differential equations for the kernels G (z, y):
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9? 9?
(ax 3 2) Gi(z,y) = V(2)Gx(z,y) + [€, Gx(z,y)] ; (11)
here we have introduced the commutator [A;B] = AB — BA. The kernels
satisfy the boundary conditions

yhm Gi(z,y)=0 (12)

T

and the potential matrix V(z) is related to either of the kernels G via

V(z) = —QiG_I_(a: z), V(z)= +258—£G_(:c, z). (13)

2.2 The Marchenko Inversion

The inverse scattering problem consists in determining the potential matrix
V(z) from the knowledge of the reflection matrix R(k) as a function of the
incident momentum k. This is done via the kernels G4(z,y), which are cal-
culated from the input reflection matrix R(k) with the help of the Marchenko
matrix equation. The latter is obtained by inserting (12), (22) and (10) into
(6), multiplying from the right by

K 1 . 1
o5 = %exp(—le)K k

and integrating over k. The left-hand side of (6) yields, writing T(k) =
1+ I'(k),

LES(6) = (e = )1+ C(a0)+ G (2. ) Hy=2)+ [ G(a,2)C( ),

(14)
where H(z) = 1,0 (z 2 0) is the Heaviside function and
1 [t
O(e,1) = o- / exp(+iKz)T'(k) exp(—iKy)K~'kdk.  (15)

For the right-hand side of (6) we have

RHS(6) = 6(z—y)1+B(z,y) +G_(2,y)H(z—y) + / G_(z,2)B(z,y)dz,
(16)
where
L[« . . -1
B(z,y) = 57_;/_ exp(—iKz)R(k) exp(—1Ky)K™ ' kdk . (17)

In the absence of bound states the matrix I'(k) has no poles in the upper
half-plane of k. If £ > y the contour for the integral (15) can be closed there
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and we, therefore, find C(z,y) = 0. Thus the expression (14) vanishes for
z > vy, and consequently the expression (16) yields

B(z,y)+ G_(z,y) + /x G_(z,2)B(z,y)dz =0, z>y. (18)

It is seen from the discussion above that, compared to the single-channel
case (as well as to the no-threshold case), the new feature is the occurrence
of the Jost solution matrices F+(k' z) and F_ (k,z), which are no longer
equal to F(—k,z) and F_(—k, z), respectively. This is a consequence of the
N-fold connectivity of the k-plane in the presence of thresholds. The kernel
matrix B(z, y) now depends on the variables z and y separately, not just on
the sum z + y, as in the former two cases.

Since K/2RK~1/2 = K-Y/2RTK!/? by the principle of micro-reversi-
bility, we have RK~! = K~!'RT. It follows that the kernel matrix B(z, y)
has the symmetry property B(z,y) = BT(y, 2).

3 Numerical Solution of the Coupled-Channel
Marchenko Equation

For a numerical test of the coupled-channel inversion procedure outlined
above, we reconstruct a potential matrix V from simulated data calculated
from that potential. Instead of solving the Schrodinger equation in the form
(1), we found it convenient to consider the corresponding Riccati equation for
the logarithmic derivative Y (k, z) = ®'(k, )@k, z) = F’ Y (k,z)F] Yk, z),

Y =V+E-k1-Y2 (19)

This first-order differential equation is integrated from z = zgr to * = zL,
where zg and z, are the right and left boundaries, respectively, of the region
where the potential is nonvanishing. From (4) the boundary condition on
Y(k,z)at = xR is

Y(k’, J?R) =1K

and the reflection matrix R(k) can be expressed as
R(k) = [iK + Y(k, L)) (K - Y(k,70)] - (20)

With the reflection matrix R(k) given on a sufficiently fine equidistant
grid of k-values up to a suitable kmax, the integral in (17) can be accurately
evaluated. After discretization of the variable y, the integral equation (18)
can be solved as a matrix equation. The derivative in (13) is obtained using
a Chebyshev interpolation (for more details cf. the Appendix).

As an example, we chose a potential matrix V(x) constructed from gaus-
sians centered around z = 2 (cf. Fig. 1),
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Fig. 1. The matrix elements of the potential V(z)

1.0exp[—5(z — 2)°] 05exp[~7(z - 2>21) L@

V(z)= (0.5 exp[-T(z — 2)?] 2.0exp[-9(z — 2)?]

The threshold energy of the second channel was chosen as €2 = 0.25. We set
2z, = 0, zr = 4 and kmax = 10. The reflectivities |r11(k)|?, |r22(k)|? and
(k2/k)|r21(k)|? corresponding to the reflection matrix R obtained for the
potential (21) are shown in Fig. 2. The resulting kernel B(z,y) is shown in
Fig. 3 as a function of the variables v = z +y and v = z — y. We see that the
kernel is nonzero only for u = & + y > 0, 1.e. the lower limit of integration in
the Marchenko equation becomes —z. Its dependence on the variable v = z—y
is relatively weak in the present example; it would disappear altogether if the
threshold energies were all set equal to zero (cf. Wadati and Kamijo 1974).

The matrix Marchenko equation (18) was solved on the interval [0,4]
using a bicubic spline interpolation (Press et al. 1992) for B(z,y). The re-
constructed potential matrix resulting from the inversion coincides with the
original one up to a difference whose absolute value does not exceed 2 x 10~3.

In order to see the effect of the truncation in k-space we repeated the
above calculation for knax = 1.25,2.5, and 5. The results are shown in Fig. 4.
It is seen that the cut-off momentum introduces spurious oscillations in the
potential which disappear when kpyax > 5.

To study the sensitivity of the algorithm to experimental errors, we added
numerically generated noise to the reflectivity for the test potential,

R(k) — R(k) + SR(k) , (22)

where 6R is a normally distributed random matrix with a standard deviation
of 1073 for the real and imaginary parts of all elements. The resulting error
8V in the potential Vi (using kmax = 10) is shown in Fig. 5. It appears that,
in this example, the inversion is not very sensitive to experimental errors.
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Fig. 2. The reflectivities (k:/k;)|ri;|*> corresponding to the reflection matrix R(k).
The reflectivities in channel 2 are defined only above the threshold k2 = 0.
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Fig.3. The matrix elements of the kernel B(z,y) as functions of v = = 4+ y and
v = ¢ — y. a) The diagonal elements b11 and b2 as function of u = x +y, b) The
nondiagonal element b2; as function of of u =z 4+ yand v=2—y.
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Fig.4. The diagonal element v1; of the reconstructed potential V(z) for different
values of the cutoff momentum kmax. For kmax = 5 the reconstructed v11 practically
coincides with the original v1;.
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Fig.5. The diagonal element v11 of the reconstructed potential V(x) for a reflection
matrix with random noise (standard deviation) 51072, The results of four different
runs are shown.

4 Concluding Remarks

We have derived the Marchenko integral equation for the coupled-channel in-
verse problem in one dimension in the presence of thresholds. These thresh-
olds introduce specific features in the input for the Marchenko equation,
so that the latter is appreciably different from what is done in the coupled-
channel inverse problem without thresholds, which closely resembles the single-
channel case. The Marchenko equation has been solved numerically for a sim-
ple two-channel test example, where the numerical algorithm has proved to
be accurate and robust against random noise.

It remains to extend the formalism to include bound states, and to apply
it to cases of physical relevance. Such applications are most likely to be found
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in the field of nanostructure devices.
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Appendix: Computational Procedure

To solve the Marchenko integral equation numerically, the integration over z
is replaced by a summation over an equidistant grid and extrapolated in a
similar manner as for the Romberg integration (Press et al. 1992). Discretiza-
tion on the grid

2z
Ym = —x+(m—0.5)ﬁ, m=1,--- ' M
with the constant weight 2z /M ,i.e., according to the repeated mid-point rule,

transforms the Marchenko integral equation into a system of linear equations,

N M
2z
bij (2, ym) + 9ij (€, ym) + HZ Y 9ik(®, Y ) B (Y ym) = 0. (A1)

k=1m'=1

This can be written in a matrix form as
GA=8
where G is an N x M-matrix ,
(G)i(i-1)M+m = 9ij (%, Ym) ,

Aan M x M—matrix,

2z
(A) =DM 4m,(G-1)M4m! = Mbij(ym)ym’) + 8 6mm

and B an N x ﬁ—matrix,

(BYs (G—1)M+m = —bij (2, ym) .

To solve this system we use the LU-decomposition of A followed by forward-
and backward—substitution employing the relevant routines from LAPACK
(Anderson et al. 1992).

To obtain G_(z, y) when y is not a grid point, we use the Nystrom method
(Press et al. 1992), i.e., we insert our solution for G_ in the discretized version
of the integral equation, (A.1), with yn, replaced by y. In practice, we start
with a relatively small value of M and double it until the Romberg-tableau
has converged to a given precision ¢.
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In order to determine the potential matrix from (13) the function G_(z, )
is interpolated on a Chebyshev grid in the interval [Zmin, Zmax|- The Cheby-
shev coefficients d; for the derivative are then obtained from the coefficients
e, =0,1,---,L — 1, of the interpolating polynomial through a simple re-
cursion relation (Press et al. 1992).

References

Agranovich Z.S. and Marchenko V. A. (1963), The Inverse Problem in Scattering
Theory, Gordon and Breach, New York.

Anderson E. et al. (1992), LAPACK Users Guide, SIAM, Philadelphia.

Braun M., Sofianos S. A., and Lipperheide R. (1995), Inverse Problems 11, L1.

Calogero F. and Degasperis D. (1982), Spectral Transform and Solitons, North—
Holland, Amsterdam, Vol 1.

Chadan K. and Sabatier P.C. (1982), Inverse Problems in Quantum Scattering
Theory, 2nd edition, Springer, Berlin.

Corvi M. (1992), Numerical Algorithms for One-Dimensional Inverse Scattering
and Imaging, Bertero M. and Pike E. R., Eds., Hilger, Bristol, Philadelphia, New
York, p. 411.

Fiedeldey H., Lipperheide R., Leeb H. and Sofianos S. A. (1992), Phys. Lett. A179,
347.

Ghosh Roy D.N. (1991), Methods of Inverse Problems in Physics, CRC Press,
Boston.

Gudkov V.P., Opat G.I. and Klein A.G. (1994), J. Phys.: Condensed Matter 5,
9013.

de Haan V.O., van Well A. A., Adenwalla S. and Felcher G.P. (1995), Phys. Rev.
B 52, 10831.

Jordan A.K. and Ladouceur H.D. (1987), Phys. Rev. A 36, 4245.

Jordan A.K. and Lakshmanasamy S. (1989), J. Opt. Soc. Am. A 6, 1206.

Kohlhoff H. and von Geramb H.V. (1993), in Quantum Inversion: Theory and
Applications, Springer, Berlin, p.314.

Lipperheide R., Reiss G., Leeb H., Fiedeldey H., and Sofianos S. A. (1995), Phys.
Rev. B 51, 11032.

Lipperheide R., Fiedeldey H., Leeb H., Reiss G., and Sofianos S. A. (1995), Physica
B213&214, 914.

Lipperheide R., Reiss G., Leeb H. and Sofianos S. A. (1996), Physica B221, 514.

Majkrzak C.F. and Berk N.F. (1995), Phys. Rev. B 52, 10827.

Newton R. G. and Jost R. (1955), Nuovo Cimento 1, 590.

Pechenick K.R. and Cohen J. M. 1981, Phys. Lett. 82A, 156.

Pechenick K. R. and Cohen J. M. (1983), J. Math. Phys. 24(2), 406.

Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B.P. (1992), Numer-
ical Recipes in FORTRAN, 2nd edition, Cambridge University Press.

Sacks P. E. (1993), Wave Motion 18, 21.

Sivia D.S., Hamilton W.A. and Smith G.S. (1991), Physica B173, 121.

Wadati M. and Kamijo T. (1974), Prog. Theor. Phys. 52, 397

Weidenmiiller H. A. (1964), Ann.Phys. (N.Y.) 29, 60.

Zakhariev B.N. and Suz’ko A.A. (1990), Direct and Inverse Problems, Springer,
Berlin.



One-Dimensional Inversion in Neutron
and X-Ray Reflection

R. Lipperheide!, G. Reiss', and H. Leeb?

! Hahn-Meitner-Institut Berlin and Freie Universitit Berlin, Postfach 390128,
D-14091 Berlin, Germany

2 Institut fir Kernphysik, Technische Universitit Wien, Wiedner Hauptstrasse 8-
10/142, A-1040 Wien, Austria

Abstract. The application of the one-dimensional inverse scattering problem to
neutron and x-ray specular reflection is discussed. Consideration is given to the
problems of the numerical treatment as well as to the limitations on the input, in
particular, the phase problem.

1 Introduction

The scattering of low-energy neutrons is described by neutron optics (cf. Sears
(1989)) in the same fashion as the scattering of x-rays. Cold neutrons and x-
rays are used to investigate the structure of surfaces and interfaces of samples
in the nanometer range (cf. Russel (1990), Penfold and Thomas (1990), Kjaer
and Als-Nielsen (1988)). Neutron and x-ray scattering supplement each other
in many respects. However, from the theoretical point of view, their analysis
is the same.

If the samples are planar we have to do with specular reflection and trans-
mission. This is essentially quantal scattering by a one-dimensional potential
barrier. The determination of this potential from the scattering information
is, then, the one-dimensional inverse scattering problem. Usually one takes
recourse to a simulation, i.e. one chooses a model for the potential whose
parameters are adjusted via a fit to the data. However, for an unambiguous,
model-independent answer one should solve the true inverse scattering prob-
lem [in x-ray and electron scattering this is often called the ‘direct method’
(1) (cf. Pendry et al. (1995)), which is to say that the solution of the inverse
scattering problem is sought directly, not indirectly by simulation].

In the recent past working numerical procedures for solving the inverse
scattering problem in specular reflection have been developed (cf. Corvi
(1992), Sacks (1993), Lipperheide et al. (1995a)), and various methods for
treating the phase problem have been proposed (cf. Ross et al. (1988), Sivia
et al. (1991), Klibanov and Sacks (1992), Fiedeldey et al. (1992), Gudkov et
al. (1993), Allman et al. (1994), Majkrzak and Berk (1995), de Haan et al.
(1995)). Here we discuss the numerical solution of the Marchenko equation
for a reconstruction of model potentials similar to those occurring in realistic
situations (Sect. 2). We consider the direct solution of the integral equation
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and the method of Padé approximants. The case of samples on thick sub-
strates is troubled by rapid oscilations in the reflectivity; it is shown how this
can be avoided by making use of inversion with a background potential for
the substrate. In Section 3 we turn to the difficulties one encounters in actual
applications. These arise, first, from the limitations on the accessible range of
values of the incident momenta. Second, and more importantly, we are faced
with the phase problem, i.e. the fact that, so far, the reflection phase cannot
measured directly. It will be shown how this can be reduced to the problem
of a discrete set of unknown parameters, and we remark on a number of pro-
posals for an actual measurement of the reflection phase. Section 4 contains
a summary.

2 Reconstruction of Realistic Model Potentials

2.1 Numerical Solution of the Marchenko Equation

Direct Solution. For a complex potential V(z), with V(z) = 0 for z < 0
and in general V(z) — V; for # — oo, the inverse problem is solved (cf.
Kay (1960), Reiss (1995), Lipperheide et al. (1995a)) by inserting the Fourier
transform B(z) of the left reflection coefficient R(q),

B(z) = %/ dqe‘iq‘”R(q) for = >0, (1)

B(z) =0 for < 0, in the Marchenko integral equation
K(z,y) + B(z +y) +/ dz B(z+ y)K(z,z) =0 with z>y (2)

and solving for K (z,y); the potential is then given by
V(z) =2dK(z,z)/dz for z >0, (3)

V(z) = 0 for # < 0. The solution is found numerically by the method of
Galerkin using B-spline polynomials (cf. Reinhardt (1985)).

Padé Solution. When the range of integration is large, the direct solution of
Eq. (2) becomes unstable, and it may be more convenient to use the method
of Padé approximants,

Ko(z,y) = =B(z +y)
Kn(z',y):—/ dzKn_1(z,2)B(z +y), n=1,...,M. (4)

-

This leads to N
Zn:() C"(a"’ y)
14+ 302, Da(e,y)’

K(z,y) =
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where C,, and D,, are found from the equations

N
> Engn-m(@,9)Dm(,9) = —Kn4n(2,9),
m=1
N
Z[n m(z y m(a:,y):Cn(a:,y), (6)
m=0

with Co(z,y) = Ko(z,y), Do(z,y)=landn=1,--- N.

Example: Complex barrier with substrate. We present an example
modelled on a realistic case, two double-layers of iron and silver on an in-
finitely thick glass substrate (cf. Fig. 1). In the numerical evaluation of
the integral in Eq. (1) one must introduce a cut-off g.. For a short cut-
off, ¢ = 1 nm™!, the Marchenko solution and the potential obtained with
the help of a (9,9)-Padé approximant are practically identical (cf. Fig. 1a);
the expected oscillations of period (7/¢.) = 3.14 nm are visible in the real
part. After averaging over these oscillations the Marchenko solution is seen
to reproduce the original potential. For a long cut-off, ¢c = 6 nm™!, the
Marchenko solution can only be found with adequate accuracy at high com-
putational expense. However, when a (9,9)-Padé approximant is used, the
reconstructed potential reproduces the original potential to good accuracy

(cf. Fig. 1b).

2.2 Two-Step Inversion with Background Potential

For thick samples (compared to the wavelength) the reflection coefficient
contains the rapid so-called Kiessig oscillations resulting from the interference
of the waves reflected from the front and back sides. This applies also to thin
samples mounted on a thick substrate, e.g. a silicon wafer. These oscillations
make a numerical calculation of the integral (1) impossible; however, they can
be taken into account analytically in the full reflection coefficient R(q) via a
known background scattering potential V°(z) representing the substrate.

We introduce the rapidly oscillating reflection coefficient for the substrate
alone,

. 1 — exp(2igd)
1 — a2 exp(2igd)’

Ro(q) = - (7)
where @ = a(q) = (7 — q)/(g + ¢) is the Fresnel coefficient for the substrate,
d is its thickness, and 7 is the wave number in the substrate. The exponen-
tial exp(2igd) gives rise to Kiessig oscillations of period w/d. However, the
difference

R(g) = R(q) — Ro(q) 8)
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Fig. 1. Reconstruction of an iron-silver double-layer structure on a glass substrate.
(a) The real and imaginary parts of the original potential (heavy curve) and their
reconstruction by the Marchenko solution with the cut-off gc = 1 nm™" (thin curve);
the reconstruction via a (9,9) Padé approximant coincides with the Marchenko
solution. (b) The real part of the original potential and its reconstruction via a
(9,9) Padé approximant with the cut-off g¢c = 6 nm™".

exhibits these oscillations only weakly.
The inversion formalism has been derived by Ghosh Roy (1991) and Reiss
(1995). Instead of the Fourier transform (1) one defines

o0

Blo.) = 5= [ dafola,)fula 1) o), ©)

— 00

where the function fy(gq, z) is the Jost solution for the substrate. The quantity
B(z,y) replaces B(z,y) in the Marchenko equation (2), from whose solution
K(z,t) one obtains the full potential in the form

V(z) = V) + 2dK (z, x)/de. (10)

Example. An example of an inversion for a system consisting of a single
layer on a substrate of finite thickness is shown in Fig. 2. The results of the
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inversion with and without background potential coincide and reproduce the
original potential in this example, where the substrate actually is rather thin
(cf. Fig. 2a). However, the computing time in the first case is very much
shorter than in the second. This has to do with the different structure of the
input for the Marchenko equation: R(q) is smooth, whereas R(q) is rapidly
oscillating (cf. Fig. 2b). If we would consider a substrate with a realistic
thickness of the order of a millimeter, the inversion with background potential
could be carried out as easily as in the present case, but the inversion using
the full reflection coefficient could not be done at all.

Fig. 2. Inversion with and without background potential. (a) The original potential
for a single layer on a substrate of finite thickness; both types of inversion reproduce
this potential. (b) The absolute square of the reflection coefficients R(q) (heavy

curve) and R(q) (thin curve).

3 Practical Applications and Their Problems

For the solution of the inverse scattering problem the complex reflection
coefficient R(gq) must be known as a complex function of both positive and
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negative values of the incident momentum g, ¢f. Eq. (1). On the other hand,
usually only the reflectivity |R(g)|* for 0 < ¢ < ¢ is measured, where gc
generally is the cut-off momentum, for which the reflectivity has become too
small to be measured. The input for negative values of ¢ and the reflection
phase must therefore be obtained from additional information.

3.1 The Input of Momenta

We begin with some remarks on the range of momenta. The effect of the cut-
off ¢. has already been discussed in Sect. 2.1. As to the reflection coefficient
for negative values of ¢, it is, for real potentials, simply given by the complex
conjugate of the reflection coefficient for positive values (cf. Chadan and
Sabatier (1982)), R(—¢) = R*(q), but for complex potentials this must be
generalized to (cf. Lipperheide et al. (1996))

R(—q) = [R(9)Rr(9) — (T/0)T*(9)] ' Rr(q), (11)

where Rg(q) is the reflection coefficient for incidence from the right, and
7 i1s the momentum of the transmitted wave. We see that information on
transmission and on reflection from the right (for ¢ > 0) is required in order
to determine the left reflection coefficient R(gq) for ¢ < 0.

3.2 The Phase Problem

The phase problem has plagued structure research by x-ray, electron- or
neutron-scattering for decades (cf. Ross et al. (1988), Worcester (1991), Kram-
er (1991), Sivia et al. (1991), Klibanov and Sacks (1992), Fiedeldey et al.
(1992), Pershan (1994), Lipperheide et al. (1995b)). The simulation approach
represents the only means of determining potentials in the absence of phase
information. In general it is non-unique, since different profiles may produce
the same reflectivity. An inversion procedure, on the other hand, cannot even
be started without phase information.

The Reduction of the Problem. Some insight into the phase problem can
be gained by observing that the reflection phase is not strictly independent of
the reflectivity owing to the analytic properties of the complex reflection coef-
ficient. For a real potential which vanishes on the negative half-axis, V(z) = 0
for z < 0, and supports no bound states (this corresponds to most actual situ-
ations in neutron and x-ray reflectometry), the left reflection coefficient R(q)
is analytic in the upper g-plane (cf. Ross et al. (1988), Klibanov and Sacks
(1992), Chadan and Sabatier (1982)). It can be written in the form

N *
R =[] (2 2% g = AR, (12)

n=1
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where we have introduced the Hilbert reflection coefficient

Ru(q) = |R(q)| exp[i ¢u(q)] (13)

with the ‘Hilbert-phase’ ¢u(q) given, for real potentials, by

[ee)

L, [WIRW),
bula) = —m— 2L p / oy (14

Thus the Hilbert factor Ru(q) is completely determined by the reflectivity
|R(q)|?, whereas the rational phase factor A(q) involving the zeros a, of R(q)
in the upper half-plane is unknown in the absence of phase data.

The phase problem thus reduces to the problem of the zeros a,, which
represent the remaining ambiguity in the solution of the inverse scattering
problem. Only a small number of them are expected to play a significant role.

It is convenient to treat only the Hilbert reflection coefficient Ry(g) in
Eq. (12) by Marchenko inversion, yielding the Hilbert potential Vi (x). The
rational phase factor A(gq) corresponds to a Darboux transformation, and
leads to the full potential V(z) via the iterative scheme (cf. Chadan and
Sabatier (1982), Fiedeldey et al. (1992), Reiss and Lipperheide (1996))

Vo(.’L') = VH(.’K),

d d
Va(z) = Vaoi(2) — 2@ In Im[fn-1(an, z)%fn_l(——a;‘“ )],

V(z) = Vn(z), (15)

n = 1,..., N. The function fr_1(g,z) is a Jost solution for the potential
Vn—1(z). The two potentials Vi(z) and V(z) yield the same reflectivity but
different reflection phases.

In order to illustrate the distribution of zeros, we consider neutron re-
flection by the two-step potential V(z) shown in Fig. 3. (cf. Crowley et al.
(1991)), which gives rise to the zeros a, ~ (2n + 1)(7/4) +10.173. Here the
Hilbert potential Vu(z) arising from the inversion of the Hilbert reflection
coefficient Ry(g) is not identical with the original potential V' (z) because of
the presence of the zeros.

Including the first, the first two, and the first ten pairs of zeros in the
inversion yields the potential curves labeled 1, 2, and 10 in Fig. 3. It is seen
that supplementing the Hilbert reflection coefficient with the ‘missing ze-
ros’ leads back to the original potential. The ‘reflectivity-independent’ phase
information is vested in a finite number of complex zeros.

Example: X-ray reflection by liquid gallium. For an example we con-
sider a recent analysis of the surface of liquid gallium using x-ray reflection
(cf. Regan et al. (1995)). Here a peak of the reflectivity at incident momen-
tum ¢p = 12 nm~! has been interpreted as a quasi-Bragg peak generated
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Fig.3. A potential V(z), the corresponding Hilbert potential Vii(z), and the po-
tentials arising from the inclusion of the first, the first two, and first ten zeros of
the reflection coefficient.

by a surface layering of the density with spacing d = (7/¢p) ~ 0.26 nm. A
good fit can be obtained using the potential represented by the thin curve in
Fig. 4.

Fig.4. The normalized potential profile for x-ray reflection by liquid gallium. Two
profiles are shown which yield the same reflectivity. The profile represented by the
thin curve is changed into that given by the heavy curve when the pair of zeros
(£12.27410.73) is included in the reflection coefficient.

However, this potential 1s not unique. Taking the reflection coefficient
calculated from it as R(q), a new reflection coefficient R!(q) can be defined
by applying relation (12) with a single pair of zeros a = £12.27 +10.73. The
profile corresponding to R'(g), as calculated by the procedure (15), has the
form shown by the heavy curve in Fig. 4. It differs from the original profile in
that it is shifted and less damped. Nevertheless, in the absence of any further
physical arguments, it appears to be as acceptable as the original profile.

The scheme discussed above is useful for testing the ‘physical uniqueness’
of simulated profiles fitting measured reflectivities. It represents a step in the
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direction of a systematic and complete investigation of the well-recognized but
often somewhat recondite phase ambiguities. The complete phase problem
can be resolved only with the help of actual measurements of the phase.

Measurement of the Phase. Several proposals have been made for mea-
surement of the reflection phase. Sivia et al. (1991) and Gudkov et al. (1993)
consider a reference layer method where the reflection phase is determined
via the interference with the reflection from a known reference layer; this
method is used in optics and can also be applied to neutron and x-ray scat-
tering. Allman et al. (1994) propose a ‘Lloyd’s mirage’ technique which makes
use of the interference with a coherent reference beam. Finally, a method for
neutron scattering has been investigated where the relation between the re-
flection phase and the ‘dwell time’ of the neutron in the sample (measured
via absorption) is exploited (cf. Fiedeldey et al. (1992)).

In the following we examine a very promising method using polarized
neutrons, which has recently been proposed by two groups (cf. Majkrzak and
Berk (1995), de Haan et al. (1995)). We consider an arrangement (cf. Fig.
5) where the potential V() of the sample (assumed to vanish for 2 < a) is
super-imposed by the potential

U(x)

HMI-TF-98-4133

Vix)

<l

Fig.5. An arrangement for measuring the complex reflection coefficient of the sam-
ple represented by the potential V(z), super-imposed by a ‘magnetic potential’
U(z). The substrate is represented by the potential V.

U(z) x o - B(z), (16)

U(z) = 0 for ¢ < 0, generated by an external magnetic field B(z), and which
depends on the polarization o, = %1 of the incident neutron. The ‘magnetic
potential’ may be due to a magnetic field in vacuum or to the magnetization
in e.g. a cobalt layer in front of the sample. The total reflection coefficient
for 0, = +1 and B(z) = |B(z)| 2 is
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¥ (q)R(q)exp(2iag) + £ (q)
Re(a) = 1 — R(q)exp(2iaq)pi (q) an

where R(q) is the reflection coeflicient of the sample alone, pL g and TL R
are the (left, right) reflection and transmission coefficients for the magnetic
potential alone, and

7 () = 5 ()& () — £F (2P (9). (18)
The measured total reflectivity is given by |R.(q)|?. Equation (16) then yields

|7 () R(g)exp(2iaq) + o (0)I° = |1 = R(g)exp(2iagq)pf(9)|*|Rx(9)?, (19)

and one can extract the complex reflection coefficient of the sample, R(q),
from measurements of |R4(g)|* for three different magnetic fields B(z) or
shifts a.

This method has two limitations. For ¢> < V, i.e. below the critical mo-
mentum of the substrate, one has |R(¢q)| = |R+(¢)| = 1. It can be shown that
in this case Eq. (19) does not yield any information on the phase of R(q).
Second, the Kiessig oscillations associated with the exponential exp(2iaq) will
destroy the phase information on R(q) if @ is larger than the inverse of the
experimental error in q.

These limitations can be removed in principle when, instead of the reflec-
tivities, one considers the polarisations of the reflected neutrons, and when
the magnetic field is allowed to enclose the entire sample (cf. Leeb et al.

(1996)).

4 Summary

The application of the one-dimensional inverse scattering problem to neutron
and x-ray specular reflection has been discussed. A numerical algorithm is
proposed which allows one to treat scattering samples on substrates. The
phase problem is reduced to the problem of a discrete set of parameters,
and proposals for measuring the reflection phase are critically examined. All
these problems show promise of practical solution in the near future, so that
analyses of reflection experiments by model-independent and unique inversion
can hopefully be carried out in the near future.
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Abstract. At the example of **C-'2C elastic scattering it is shown that the S-
matrix at non-integer values of the orbital angular momentum quantum number
contains valuable information which should be taken into account in the analysis of
scattering data at fixed energy. The possibility of the available global inversion pro-
cedures to include such non-standard S-matrix values is discussed. Specifically, an
extended Newton—Sabatier method based on the interpolation formulae of Sabatier
is worked out and subsequently used to demonstrate the role of this information to
reduce the inherent ambiguities of the inverse scattering problem at fixed energy.

1 Introduction

In the last two decades there has been considerable progress in the measure-
ment and understanding of nuclear scattering processes. Nowadays, mea-
surements of the elastic scattering cross sections can be performed with high
accuracy (see e.g. [1]). A similar step forward has been achieved in the the-
oretical description of nuclear processes [2]. A basic tool of the theory is the
optical potential which is a complex effective two-body interaction describing
the elastic scattering explicitly.

Because of its basic role there has been many attempts to evaluate optical
potentials microscopically [3]. The proper treatment of the multi-nucleon sys-
tem, however, is rather difficult and our knowledge about the optical potential
is far from being satisfactory. Among the various approaches the folding po-
tentials based on different theoretically motivated nucleon-nucleon potentials
are working best. In general they yield a satisfactory description of the gross
structure but fail to reproduce details of the observed elastic cross sections.

An alternative way to determine optical potentials is the analysis of elastic
scattering data. In the standard notation this is called an inverse problem
at fixed energy. Most of this so-called optical model analyses are performed
via simulation, where the parameters of a reasonable potential ansatz are
adjusted in order to describe the experimental data. There exists a great
variety of such simulations ranging from simple potential fits {5], {6] to rather
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sophisticated procedures [7]. A common feature of all these methods is their
uncontrollable trajectory in the parameter hyperspace and consequently their
unknown dependence on the starting values. Hence, they are denoted as local
inversion procedures [8].

An elegant and more fundamental way to determine optical potentials
from scattering data is given by the use of global inversion procedures. They
are characterized by an analytically known relationship between S-matrix and
potential. In the fifties and sixties many solutions of various inverse problems
in quantum scattering theory have been given by mathematical physicists
[9], [10], [11], [12]. These solutions, however, are mathematically rather in-
volved and the formulation of manageable numerical algorithms has only
been started at the beginning of the eighties. In the last decade considerable
progress has been achieved and many successful applications to experimen-
tal data underline the increasing importance of global inversion methods
[13], [14], [15].

The determination of optical potentials from scattering data at a single
energy is far from being unique. In principle there are two sources of ambi-
guities. The first one is related to the determination of the S-matrix from
scattering data because the observables do not contain the complete phase
information. The second source of ambiguity is the fact that observables at
a single energy yleld the S-matrix only at a finite number of integer values of
the orbital angular momentum quantum number £. From scattering theory it
is well known that this is not sufficient to determine a unique potential [16].

In this paper we deal with the latter type of ambiguity which represents
an inherent difficulty in all inverse scattering problems at fixed energy. In
particular we will show in section 2 at the example of 12C-12C scattering
that values of the S-matrix at non-integer #-values contain important infor-
mation on the potential. Such values of the S-matrix can easily be included
in the global inversion scheme of Lipperheide and Fiedeldey [17] as well as
in the semiclassical WKB-method. At present the standard matrix method
of Newton—Sabatier [11] which is best suited for analyses at lower energies
cannot include the S-matrices at non-integer ¢-values. Therefore adapting
properly the interpolation formulae of Sabatier [18] we present in section 3
an extended Newton—Sabatier method for central potentials which includes
the S-matrix also at the half-integer ¢-values. Section 4 is devoted to vari-
ous applications of this method in order to demonstrate the importance of
such non-standard S-matrix values. Finally, concluding remarks are given in
section 9.

2 The inherent ambiguity of inversions at fixed energy

The inverse scattering problem in quantum mechanics at fixed energy deals
with the determination of the potential from the knowledge of the associated
S-matrix at a given energy. In principle it is a specific spectral problem based
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on the radial Schrodinger equation,

2 2_1
{%_71+1_U(p)}45(p:/\):0, (1)

where p = kr with k being the wave number, V(p/k) = EU(p) is the po-
tential, £ is the center of mass energy, and A is related to the orbital angu-
lar momentum quantum number £ by A = £ + % Since we are considering
inverse scattering problems at fixed energy we will suppress the k- and E-
dependence of the various functions in the following. For the description of
scattering processes the so—called regular solution @(p; A) of Eq. (1) is of in-
terest. This solution vanishes at the origin and is therefore uniquely defined
apart of its normalisation. At asymptotic distances the regular solution can
be written as a superposition of regular and irregular Coulomb functions
F(p; X, n) and G(p; A, n), respectively. Hence ®(p; A) takes the form

B(p;N), = AN (S + 1) F(p; A, m) + (SN = 1) G(p; A, m)], (2)

where 7 is the Sommerfeld parameter and A()) is an arbitrary amplitude
factor. The asymptotic behaviour of ¢(p; A) is characterized by the S-matrix
S(A). From the mathematical point of view there is no restriction on the
values of A and k and for arbitrary complex values of these quantities a
regular solution can be given.

Optical model analyses aim at the determination of optical potentials from
the knowledge of the scattering observables at a given energy. Let us assume
that we can extract the corresponding values of the S-matrix uniquely. Thus
the inverse scattering problem at fixed energy is reasonably posed and several
solutions have been given in the literature [12]. An important question with
regard to the central goal of the present paper is the question of uniqueness of
the inverse problem at fixed energy. Already in 1968 Loeffel [16] could show
that the potential is uniquely defined, if the S-matrix is known for ReA > 0.

The theorem of Loeffel reflects the mathematical structure of the radial
Schrodinger equation but does not correspond to the situation of an analysis
of scattering data at a given energy in terms of an optical potential. This can
easily be seen from the calculations of cross sections in quantum mechanics.
For simplicity we restrict ourselves again to the scattering of spinless particles
with central interactions. In this case the scattering amplitude,

£0) = 5o DA IS() ~ 1] Pecos(6)). 3
£=0

depends only on the scattering angle § and the S-matrix at the half-integer
values of A. Hence, it 1s obvious that scattering observables yield information
only on these specific values of the S-matrix which are often denoted as the
standard or physical ones. The S-matrix at other values of the argument is
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not directly accessible to experiment at the given energy and these values are
therefore called, in what follows, non-standard or unphysical.

In practice elastic scattering data determine S-matrix values only at a
finite number of half-integer A-values. This is not sufficient to extract unique
potentials from such analyses. Further assumptions about the S-matrix at
non-standard A-values are required to improve the situation and to associate
a reliable potential with the scattering data. In a rather hidden and uncon-
trollable way this is done in local inversion procedures via the ansatz of a
parametrized class of potentials. In global inversion procedures based on ex-
actly solvable models [11], [17], [9] these assumptions become more evident
because they yield classes of S-matrices defined on the whole complex A-
plane. The situation becomes particularly clear for the rational scheme [17],
where parameters («;, 3;) of the explicitly given S-matrix,

500 = 50 I o (@

i=1

are adjusted to reproduce the scattering data. Here Sp(X) is the S-matrix
corresponding to an appropriately chosen background potential Vj. Because
of the specific analytic form the values of the S-matrix at the half-integer A-
values determine the parameters (a;, 3;) and thus the S-matrix in the complex
A-plane. Hence, the application of different exactly solvable models to the
same scattering data can lead to different potentials.

In the following we give an example where this feature of exactly solvable
models shows up. We consider the analysis of 12C—1*C phase shift data which
have been extracted from experimental cross sections measured by Ledoux et
al. [20]. An extensive study of the associated potentials obtained in the so-
called Newton—Sabatier inversion method has been given by May and Scheid
[14]. In this system there is a quasi-molecular resonance which lead to a char-
acteristic structure of the phase shifts. At E., = 18.5 MeV this resonance
affects the behaviour of the phase shifts in the vicinity of £ = 11 which, how-
ever, cannot be seen in experiment at this energy because of the identity of
the colliding particles. Therefore, May and Scheid [14] employed the Newton—
Sabatier inversion scheme assuming different values of the S-matrix at £ = 11
and obtained the potentials denoted by MS in Fig. 1. For comparison we have
used the same phase shift data in the mixed inversion scheme of Lipperheide
and Fiedeldey (see e.g. [13]). In Fig. 1 the corresponding potentials are com-
pared with the results of the Newton-Sabatier method of May and Scheid
[14]. In the case of 611 = 57.3 degrees both methods lead to rather similar po-
tentials. Under the assumption of §;; = 174.2 degrees a huge difference of the
potentials is observed. Because the S-matrix at standard A-values is equally
reproduced by the potentials of both procedures this difference is related to
the different behaviour of the phase shifts at non-standard A-values.
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V (MeV)

Fig. 1. Potentials obtained by inversion of '?C-'2C phase shift data of Ledoux et
al. [20] at Ecm. = 18.5 MeV assuming different values of the phase shift at £ = 11.
The potentials of May and Scheid [14] are compared with those obtained by the
mixed scheme of Lipperheide and Fiedeldey [17] .

3 Extended Newton—Sabatier method

The inclusion of additional information concerning the S-matrix at non half-
integer A-values into global inversion procedures will be an important step to
gain reliability of the extracted potentials. As far as we know all applications
of global inverse scattering methods to optical model analyses of experimental
data are based either on semiclassical approximations or exactly solvable
models. The latter are derived from Darboux transformations [9] of the radial
Schrodinger equation and include the well known methods of Lipperheide
and Fiedeldey [17] and the matrix method of Newton and Sabatier [11].
The rational and nonrational schemes of Lipperheide and Fiedeldey [17] are
characterized by rather simple analytical forms of the S-matrix with open
parameters. It is a straightforward extension to adjust these parameters to
the S-matrix not only at the standard but also at non-standard A-values. The
same is true for the semiclassical WKB-potential [21] where an analytical
form of the S-matrix is required to evaluate the associated quasi—potential.
Both methods work best at rather high energies but lead to difficulties in
analyses of low energy data. At lower energies the matrix method of Newton
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and Sabatier [11] is well suited and many successful applications of this pro-
cedure have been reported in the literature [22]. This method is based on the
fundamental relation (see e.g. [12], chapters XI and XII)

#(p0) = ulp ) = [ A Koyl (%)

where @(p; ) and u(p; A) are physical solutions associated with the inter-
actions U(p) and Up(p), respectively. The so-called transformation kernel
K(p, p') satisfies the integral equation

Kip.#) = Qpis') = [ dssK(p.9)Q(s.) (6)

0

and depends on the S-matrix of the unknown potential U(p) via the spectral
kernel Q(p, p’). The potential U(p) can be obtained from K(p, p') via,

U(p) = Uo(p) - %% [%K(p,p)] : (7)

thus solving the inverse scattering problem.
It is the basis of matrix methods [12], [9] to assume for the spectral kernel
the separable form

Q(P, p’) = Z c)\u(p; )\)u(p’; )‘) ’ (8)

AEN

where 2 may be any set of numbers in the half plane Re) > —%, provided
that the summation of Eq. (8) exists. As can easily be seen from Eq. (6) this
specific form of Q(p, p') results in the separable transformation kernel

K(p,p') =Y exd(p; Mu(p'; A) . (9)

AEN

Entering this expression in Eq. (5) yields reformulated equations for the wave
functions

B(p;A) = u(p; \) = D exLip; \, N)B(p; ) (10)
AeR
with ,
Lip; M, X)) = / dss™u(s; N)u(s; X') . (11)
0

This system of coupled equations, Eqgs. (11,12), is used to determine the
potential coefficients ¢, from the asymptotic behaviour of the wave function
and thus from the S-matrix. For a set 2 with a finite number of elements it
has been shown recently [9] that these matrix methods represent a subclass
of Darboux transformations of Eq. (1).
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The set £2 of the standard Newton—Sabatier method consists of all positive
half-integer A-values, 2 = {%, g—, —g—, ---}. Hence, only the S-matrix at so—
called standard A-values enter the (standard) Newton—Sabatier inversion.

To achieve our goal and to include the S-matrix also at non-standard
values in a matrix inversion method we must extend the set {2 to contain
also non-standard A-values. In the following we consider the specific set {2
involving positive integers and half-integers which has been discussed by
Sabatier [23].

The implementation of non-standard S-matrix values in the numerical
procedure is performed analogously to the standard Newton—Sabatier method
via Egs. (2) and (11). In order to obtain a unique solution of Eq. (11) we
employ the same modification as Miinchow and Scheid [24] and assume that
the potential for » > rq = pg/k either vanishes or is equal to the Coulomb
potential from the scattering system. Consequently, the wave functions for
p > po are given by Eq. (2) and the system of coupled linear equations for
the potential coefficients ¢), Eq. (11), can be written down for several p—
values with p > pg. We solve this overdetermined system of equations for the
potential coeflicients c) by a least square method. The potential coefficients
cx obtained are then used to evaluate ¢(p;A) and the potential U(p) for
0<p<po.

In principle the method is a straightforward extension of the procedure
of Miinchow and Scheid [24]. We face the additional problem, however, that
we must provide the Coulomb functions at non-standard A—values. For this
purpose the code COULFG [25], which has the required options, has been
used for the examples discussed in section 4.

4 The importance of the S-matrix
at non-standard A-values

The possibility to include non-standard S-matrix values in global inversion
procedures enables us to study the effect of this additional information on the
potential. We are not aware of any calculations in the recent literature which
has studied this specific aspect with respect to its applicablity in analyses
of scattering data. We focus our interest to the extended Newton-Sabatier
method because in this inversion procedure the inclusion of non-standard
A-values is less obvious compared to inversion algorithms with an explicitly
given analytic form of the S-matrix.

First of all we perform a comparison of the standard and the extended
Newton-Sabatier method by schematic examples. This is particularly inter-
esting for the inversion of scattering data at rather low energies, where only
very few partial waves with their corresponding S-matrix values can be ex-
tracted from experiment with reasonable accuracy. Consequently the input
information for the standard Newton—-Sabatier method is rather limited and
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one cannot expect reliable inversion potentials. The situation improves sig-
nificantly in the extended Newton—Sabatier method because the input infor-
mation is doubled.

To show the effect of the additional information we consider a schematic
example of n-« scattering below Epr4, = 100 MeV where the spin—orbit term
as well as the imaginary part have been ignored. For the real part we assume
a Woods—Saxon shape with the parameters V) = —41.8 MeV, Ry = 2.365
fm, and ag = 0.25 fm corresponding to the n-a parameters of Satchler et
al. [26] at Ers = 1 MeV. Because of the rather small radial range the
number of significant partial waves is smaller than 10 even at Fp,, = 100
MeV. Using this potential the phase shifts at standard and non-standard
A-values have been evaluated at several energies. These values have been
used in inversion procedures. The reconstructed potentials obtained by the
standard and the extended Newton—Sabatier method are displayed in Fig. 2
together with the original one. A comparison of the results clearly exhibits
the improvement of the reproduction by the use of non-standard S-matrix
values. The improvements are most striking at lower energies where only few
partial waves can be used.

10 .
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Fig.2. Comparison of the reproduction of a schematic real n-a potential of
Woods-Saxon form (dashed lines) from the phase shifts by inversion applying ei-
ther the Newton-Sabatier method (dotted lines) or the extended Newton-Sabatier
method (solid lines). The parameters of the original potential are given in the text.
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The number of partial waves entering the analyses of heavy-ion scattering
data is rather high even at low energies because of the large radial extension.
One faces, however, the problem that the lowest partial waves are strongly
absorbed and their phase shifts are not well determined from experiment. It
is therefore worthwhile to study whether the additional information entering
the extended Newton-Sabatier method will lead to an improved reconstruc-
tion of the potential also in this case. We consider therefore a schematic
12C-12C potential of Woods—Saxon form. The parameters have been cho-
sen to be Vp = 18.0 MeV, Rg = 2.315 fm, ag = 0.73 fm, V; = 2.5 MeV,
Ry =2.31b and ay = 0.73 which corresponds to the gross structure of the in-
version potentials displayed in Fig. 1. Following the same procedure as above
we apply the standard and the extended Newton-Sabatier method to the
corresponding S-matrix. In this example sufficient scattering information is
available and excellent reproduction is obtained by both inversion methods
(Fig. 3). Considering the inversion potentials in detail the extended Newton-
Sabatier method yields better results over the whole radial range. Both ex-
amples demonstrate the importance of additional S-matrix information to
improve the reproduction of potentials. The suppression of the S-matrix at
low ¢-values by absorption does not change this finding.

The role of the information contained in the S-matrix at non-standard ¢-
values can easily be investigated by the extended Newton-Sabatier method.
For this purpose we consider the example of 12C-1? scattering at Ep .5 = 28
MeV and assume slight modifications of the S-matrix at non-standard -
values. To simplify the inversion calculations we restrict ourselves again to
the Woods-Saxon potential with the parameters Vg = 18.0 MeV, Rr = 2.315
fmand ag = 0.73 fm, V; = 2.5 MeV, Ry = 2.315, ay = 0.73, and the Coulomb
radius B¢ = 3.7 fm. This potential can reasonably be reproduced from the
corresponding phase shift data by application of the standard as well as
by the extended Newton—Sabatier method (Fig. 3). The modifications from
the S-matrix Swg(A) evaluated from the Woods—Saxon potential have been
assumed as,

Smod(X) = Sws(X) exp ( 2% A sin(() — —;—)7)6_ - ) (12)

where the parameters A, Ao, and § determine the strength, the position and
width of the modifications in A-space. It is obvious that this specific form of
the modifications does not change the S-matrix at integer ¢-values, thus al-
ways leading to the same inversion potential in the standard Newton-Sabatier
method. In order to demonstrate the effect of unphysical values we have fixed
the parameters Ay = 8 and # = 2 and perform inversions by the extended
Newton—Sabatier method varying the strength parameter A. The resulting
potentials shown in Fig. 4 exhibit the strong dependence of the inversion
potential on the so—called non-standard information. Thus it is obvious that
reliable potentials via global inverse scattering procedures can only be ob-
tained with inclusion of such additional information. This is particularly true
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Fig.3. Comparison of the reproduction of a complex '2C-'2C potential of
Woods-Saxon form (dashed lines) from the phase shifts at E..,. = 28 MeV by in-
version applying either the Newton-Sabatier method (dotted lines) or the extended
Newton-Sabatier method (solid lines). The parameters of the original potential are
given in the text. The figure shows a) the real potential, b) the imaginary potential
and c) the difference between the inverted and original real potentials.

for systems with identical particles where part of the usually accessible infor-
mation is hidden by the symmetry properties of the scattering amplitude.

5 Conclusions

At the example of low energy 12C-12C scattering we have pointed out that the
information contained in the S-matrix at non-standard A-values is essential to
determine uniquely potentials from phase shift data via inversion techniques.
It is straightforward to include such S-matrix values into the WKB inversion
method [21] as well as into the mixed inversion scheme of Lipperheide and
Fiedeldey [17], which are best suited for applications at sufficiently high en-
ergies. At lower energies the Newton-Sabatier inversion method [11] has been
successfully applied in the past, which in its standard version cannot take
into account the behaviour of the S-matrix at non-standard A-values.

To study the effect of additional information on the S-matrix at relatively
low energies we have considered an extended Newton-Sabatier scheme which
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Fig. 4. Modification of the inversion potentials generated by changes of the 2C-*2C
scattering phase shifts at Ec,,. = 28 MeV at non standard £-values. The figure
shows a) the modifications of the phase shifts, b) the inversion potentials.

is based on the knowledge of the S-matrix at integer and half-integer A-values
[23]. The application of this extended method is performed analogously to
the inversion procedure introduced by Miinchow and Scheid [24] assuming
that the potential is known for large radii.

Although the method has already been given by Sabatier in 1967 we are
not aware of any numerical application to nuclear scattering data. Our first
calculations on schematic n-a- and ?C-12C-scattering data clearly indicate
that there is an improved reproduction by the extended method compared
to the standard one. In a further example we modified the S-matrix only
at non-standard A-values and applying the extended Newton-Sabatier proce-
dure we could demonstrate the sensitivity of the potentials on this additional
information.
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Summarizing our results we can conclude that some knowledge about the
behaviour of the S-matrix at non-standard A-values is required to extract
reliable optical potentials from scattering data at a single energy. This is
particularly true for the theoretically formulated inversion method which
takes into account central and spin-orbit terms [27]. Recently this method
has been reformulated and implemented numerically [28] so that applications
to optical potential analyses can be expected in the near future.

At this point there arises the important question, how to obtain reliable
information on the S-matrix at non-standard A-values. A promising way to
gain this information seems to be a fit of a reasonably parametrized S-matrix
to describe the cross sections at different energies simultaneously. Although
only the S-matrix at half-integer A-values enters into the fit at each energy
one can expect to get a reliable interpolation for non-standard A-values if
cross section data at neighbouring energies are used. Because of the complex
scattering phenomena in nuclear systems it is difficult to give a general form
for the parametrisation of the S-matrix.

A severe problem will be the rather great sensitivity of the inversion
potentials on the non-standard scattering information. Thus non suitable
interpolations of the S-matrix may lead to oscillating potentials which are not
useful for further calculations in nuclear physics. Apart from these difficulties
the extended Newton-Sabatier method will be most valuable for low energies
where only limited partial waves are significant.
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Numerical Method for Solving the Inverse
Problem of Quantum Scattering Theory

Ruben G. Airapetyan, Igor V.Puzynin, and Eugeni P. Zhidkov
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Automation, Dubna, 141980, Russia

Abstract. We present a new numerical method for solving the problem of the
reconstruction of interaction potential by a phase shift given on a set of closed
intervals in (I, k)-plane, satisfying certain geometrical ”Staircase Condition”. The
method is based on the Variable Phase Approach and on the modification of the
Continuous Analogy of the Newton Method.

1 Introduction

The problem of the numerical reconstruction of potential by scattering data
is well known and important from the mathematical point of view and for
such physical applications as the analysis of a nuclear interaction potential
by experimental data. The main approaches for theoretical investigations of
the problem are well-known Gelfand-Levitan, Marchenko and Krein meth-
ods (Agranovich and Marchenko (1960), Marchenko (1977), Levitan (1984)),
Chadan and Sabatier (1977,1989)). At the same time the development of the
corresponding numerical methods is sufficiently complicated by the reason of
the ill-posedness of the mentioned inverse problems.

In this report we consider a new statement of the inverse problem of the
Quantum Scattering Theory and suggest the numerical method for its solving.
To this end we describe the Newtonian Iterative Scheme with Simultaneous
Iterations of the Inverse Derivative and formulate the theorem establishing
its convergence. Then we use the method for the inverse problem for radial
Schrodinger equation in more general statement than in Gelfand-Levitan-
Marchenko-Krein Theory.

2 Statement of the Problem

The following Cauchy problem for the radial Schrodinger equation is consid-
ered:

d? I(l+1

okn+ (- sk =vearn o

lim (20 + D= to(lk,r) =1 . (2)
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It is well-known that for the potentials satisfying the condition

/7‘|V(r)|dr < 00 (3)
0
the wave function has the following asymptotic behaviour:
[F(l,k)| . l
¢(1) k! T') ~ k141 ) Sln(kr - E + 6(17 k)) r—00, (4)

where F'(I, k) is the Jost Function.
The Inverse Problem of the Quantum Scattering Theory is the problem of

the reconstruction of an unknown potential V(r) by some given information
about phase shift 6(1, k).

Note. For details and complete bibliography we refer to Chadan and Sabatier
(1977,1989), Ramm (1992), von Geramb (Ed.) (1994), Zakhariev and Suzko
(1990), Zakhar’ev (1996) .

A potential in (1) is a function of one variable r so it is naturally to
reconstruct a potential by a phase shift given on a certain one-dimensional
submanifold of (I, k)-plane. The problem is well known and investigated in
two important special cases: for the potentials given for fixed orbital mo-
mentum [ (6(k) = &;(k)) and for the potentials given for fixed energy (f.i.
6(1) = 61(1)). Geometrically these cases correspond to rays issuing from ori-
gin of the (I, k)-plane and parallel to the axes. At the same time there are very
few results concerning the potential reconstruction by phase shifts given on
another one-dimensional manifolds and all of them are obtained in the frame-
work of the WKB or generalized WKB approaches (Vasilevsky and Zhirnov
(1977), Bogdanov and Demkov (1982), Abramov (1984), Chadan and Sabatier
(1977,1989)). The theoretical analysis of the problem is very difficult because
there are no generalization of the Gelfand-Levitan-Marchenko-Krein Theory
for such situations.

Our approach to the numerical investigation of these problems is based
on the following Variable Phase Equation (Calogero (1967), Babikov (1968)):

861, k, )

o k=1 (r)[cos(8(1, k,r))ji(kr) — sin(6(l, k, 7))mi(kr)]?,  (5)

where

6(L,k,0)=0, lim 6(1,k,r) = 6(1, k), (6)

56 = Eian@), (o) =) @

are Bessel-Ricatti functions.

and
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Let us denote by ¢ the nonlinear operator associating to a potential V(r)
corresponding phase shift §(/, k). Then the inverse problem can be considered
as a nonlinear equation

S(Vy=6 (8)

with respect to the unknown potential V(r).

3 Continuous Analogy of Newton Method

First we describe the Continuous Analogy of Newton Method (CANM, Ga-
vurin (1958),Zidkov and Puzynin (1967)).

Let H be a real or complex Hilbert space, L(H) - the space of linear
operators in H, ¢ : H — H - a nonlinear operator. The following nonlinear
equation is considered:

p(z) =0 . 9)

Denote by z¢ an initial approximation to the solution of the (1), by ¢'(z) - the
Frechét derivative of the operator ¢ and by ¢'(z) - the Gateaux derivative
of the operator ¢'(z), i.e. ¢”(z) for fixed & is a linear operator from H to
L(H), such that

¢'(x+&) — ¢ () = ¢"(2)¢ +n, and ||n]| [[€]I"" €0, for § -0 .

Now let us consider the following Cauchy problems in H:

2'(t) = —¢' 7 (z()e(z(t), =(0) =z . (10)

For the problem the following convergence theorem holds.
Theorem 1. (Gavurin (1958)) If there ezists a positive number r such

that the operators ¢'(z), 90’_1(;:7) and ¢"(z) exist in any point of the ball
B = {z; ]|z — zo|| < rllp(=o)||}, ¢"(x) is bounded in a neighborhood of every
point of B, and for every x € B

e~ @)l <.

Then for t € [0,+00) there exists a solution x(t) of the problem (2), x(t) € B
for all t € [0, +00),

télfgo z(t) ==z (11)

and x* 1is the solution of the problem (1).
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4 The Fréchet Derivative Operator &'(V)

So the principal point for solving (8) by means of CANM is the inversion of
the operator &'(V'). The last one can be simply obtained:

(@ (V) k) = 71<(l,k,t)€(t)dt ) (12)
where 0
K@hﬂ:~B@hﬂwﬂ7&@M@h@@], (13)
Al k,7) = k™ [sin(26(1, k, 7)) (57 (kr) — nf (kr))+
+ cos(26(1, k, 7)) ji(kr)na(kr)] (14)
B(l,k,r) = k™ [cos(6(1, k, 7)) ji(kr) — sin(6(, k, r))ni(kr))* . (15)

The inversion of the operator (12) is in fact a problem of solving the Fredholm
integral equation of first kind. The last one is an ill-posed problem and needs
some regularization. In (Vizner, Zhidkov and Lelek (1968)) the algorithm
using Tikhonov regularization at every step of the Newtonian iterations was
constructed in the particular case of the problem, when phase shift is given
for zero orbital momentum (see also Vizner et al. (1978)). However such
algorithm is unstable and has low accuracy.

Note. For another applications of CANM we refer to Vinitsky et al. (1990),
Puzynin et al. (1993).

5 Continuous Analogy of Newton Method with the
Simultaneous Inversion of the Fréchet Derivative

Now our aim is to consider a continuous Newton method with the simul-
taneous calculation of reciprocal to the operator ¢’(z). Let us consider the
following system:

z)=10
{Z'((z))y —E=0, (16)

where Y € L(H) and F is the identity operator. Let Y; be some approxima-
tion to ¢/(zo)~! and p is a positive number.
Let us consider the following Cauchy problem:
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2'(1) = Y (Hp(a(t))
{Y’(t) = (@' (2(B))' ¢ (@)Y (1) + Y (1) )& (=®))+ (17)
+2p2(¢ (2(1)))"

I(O) = Xy, Y(O) = Yo .

Let us assume that the following condition holds.

Condition A. There ezist r > 0 and € > 0 such that

1) Frechét derivative ¢'(z) and Gateauz derivative ¢”(z) exist in
B = B(zo, r||¢(z0)]|), moreover

ll"llr = sup  sup [|(¢"(2)¢llL(m) < oo,
z€B ¢eH,||¢]|=1

2) for any x© € B the operator (¢ (z)) is invertible and

rx—1

™ llr = sup [|(™ ()M < o0,
r€B

3) the following inequality holds

max{[[Yoll, [l I1.}
0 < < 7. 18
T~ max{[[p/(z0)Y6 — B|[,¢) (18)

Denote

llellr = sup ||e(2)]]
r€eB

-1 -1y el il
po = max{|[%ol], ¢ "I} I~} LU g

The following theorem establishes the convergence of the method.

Theorem 2. (Airapetyan and Puzynin (1996)) If the Condition A
holds, then for every p > po

1) the solution (z(t),Y (t)) of the problem (4) exists for t € [0, +00) and

z(t) € B(zo,rl|e(zo)ll) , (20)
lle'(z()Y () ~ E|| < max{||¢'(z0)Yo — El|, €} ; (21)
2) there exists
téif;o z(t) =z

and z* is the solution of the problem (1).
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6 An Inversion of the Operator &'(0)

So for the numerical solving of the inverse problem by means of the described
method we must invert ¢'(V') only in the initial approximation point V(7).
As an initial approximation we use zero potential: V(r) = 0. So we have to
solve the following Fredholm equation of first kind:

@ OO = ¢ [ REnEC)r = oL k) (22
In the case | =0, g = g(k), k € [0, C) the operator @'(0) is very simple:
@ OO®) =~ [ sin(krer)ar (23)

0

and can be easy inversed by means of the Fourier sin-trasformation:
(o)
(@'(0) 'g)(r) =2r / cos(2kr)g(k)kdk . (24)
0

Now our goal is to inverse ¢'(0) for g(l, k) given on more general subset. Let

us denote
oo

n(k) = /sin(kr)f(r)rd<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>